On a Class of Incomplete Gamma Functions with Applications

M. Aslam Chaudhry
Syed M. Zubair
Contents

Preface ix

Acknowledgments xiii

1 Generalized Gamma Function 1

1.1 The Gamma Function \(\Gamma(\alpha) \) 1

1.2 Definition of the Generalized Gamma Function 9

1.3 Properties of the Generalized Gamma Function 10

1.4 Mellin and Laplace Transforms 16

1.5 Asymptotic Representations 18

1.6 The Macdonald Probability Function 19

1.7 The Digamma Function \(\psi(x) \) 20

1.8 Generalization of the Psi (Digamma) Function 23

1.9 Integral Representations of \(\psi_b(\alpha) \) 24

1.10 Properties of the Generalized Psi Function 27

1.11 Graphical and Tabular Representations 32

2 The Generalized Incomplete Gamma Functions 37

2.1 The Incomplete Gamma Functions 37

2.2 Definition of the Generalized Incomplete Gamma Functions 43

2.3 Properties of the Incomplete Generalized Gamma Functions 44

2.4 Convolution Representations 47

2.5 Connection with Other Special Functions 51

2.6 \(KdF \) Functions and Incomplete Integrals 59

2.7 Representation in Terms of \(KdF \) Functions 65

2.8 Reduction Formulas for \(F_{2:0;0}^0[x, y] \) 72

2.9 Integrals of the Product of Bessel and Gamma Functions 75

2.10 Asymptotic Representations 80

2.10.1 An Expansion in Terms of Incomplete Gamma Functions 80

2.10.2 An Expansion in Terms of Laguerre Polynomials 81

2.10.3 An Expansion in Terms of Confluent Hypergeometric Functions 81

2.10.4 A Uniform Expansion in Terms of the Error Function 82

2.11 Integral Representations for \(\Gamma(\alpha, x; b) \) 85

2.12 Graphical and Tabular Representations 89
3 The Family of the Gamma Functions 123
 3.1 The Family of Incomplete Gamma Functions 123
 3.2 The Generalized Error Functions 124
 3.3 The Generalized Exponential Integral Function 131
 3.4 The Generalized Fresnel Integrals 134
 3.5 The Decomposition Functions 141
 3.6 The Extended Decomposition Functions 146
 3.7 The $E(u,v)$ and $F(u,v)$ Functions 149
 3.8 The $e(u)$ and $f(u)$ Functions 151
 3.9 Graphical and Tabular Representations 153

4 Extension of Generalized Incomplete Gamma Functions 195
 4.1 Introduction .. 195
 4.2 The Decomposition Formula 197
 4.3 Recurrence Relation 198
 4.4 Laplace and K-Transform Representation 200
 4.5 Parametric Differentiation and Integration 203
 4.6 Connection with Other Special Functions 205
 4.7 Integral Representations 206
 4.8 Differential Representations 210
 4.9 The Mellin Transform Representation 212

5 Extended Beta Function 215
 5.1 The Beta Function 215
 5.2 The Incomplete Beta Function 217
 5.3 The Beta Probability Distribution 220
 5.4 Definition of the Extended Beta Function 221
 5.5 Properties of the Extended Beta Function 221
 5.6 Integral Representations of the Extended Beta Function 225
 5.7 Connection with Other Special Functions 227
 5.8 Representations in Terms of Whittaker Functions 235
 5.9 Extended Incomplete Beta Function 240
 5.10 The Extended Beta Distribution 244
 5.11 Graphical and Tabular Representations 248

6 Extended Incomplete Gamma Functions 265
 6.1 Introduction .. 265
 6.2 Definition of the Extended Incomplete Gamma Functions 265
 6.3 The Decomposition Formula 268
 6.4 Recurrence Formula 270
 6.5 Connection with Other Special Functions 271
 6.6 The H-function 280
 6.7 Incomplete Fox H-functions 281
Extended Riemann Zeta Functions

7.1 Introduction .. 287
7.2 Bernoulli’s Numbers and Polynomials 287
7.3 The Zeta Function 290
7.4 Zeros of the Zeta Function and the Function \(\pi(x) \) 297
7.5 The Extended Zeta Function \(\zeta_b(\alpha) \) 298
7.6 The Second Extended Zeta Function \(\zeta^*_b(\alpha) \) 304
7.7 The Hurwitz Zeta Function 306
7.8 Extended Hurwitz Zeta Functions 308
7.9 Extended Hurwitz Formulae 311
7.10 Further Remarks and Comments 316
 7.10.1 An Identity of the Hurwitz-Lerch Zeta Function 316
 7.10.2 The Zeta Function at Integer Arguments 318
 7.10.3 Theorem of Christian Goldbach (1690–1764) 320
7.11 Graphical and Tabular Representations 322

Phase-Change Heat Transfer

8.1 Introduction .. 329
8.2 Constant Temperature Boundary Conditions 330
8.3 Convective Boundary Conditions 334
 8.3.1 Solid at the Solidification Temperature \(T_f \) 338
 8.3.2 Surface of the Solid Phase Maintained at \(T_c \) 338
 8.3.3 Solidification from above with Convection at the Interface 338
8.4 Freezing of Tissues around a Capillary Tube 339
8.5 Freezing of Binary Alloys 343
8.6 Freezing around an Impurity 347
8.7 Numerical Methods for Phase-Change Problems 354

Transient Heat Conduction Problems

9.1 Introduction .. 357
9.2 Time-Dependent Surface Temperatures 358
 9.2.1 Some Closed-Form Solutions 359
9.3 Time-Dependent Surface Heat Fluxes 370
 9.3.1 Some Closed-Form Solutions 373
9.4 Illustrative Example 381

Heat Conduction Due to Laser Sources

10.1 Introduction .. 385
10.2 Mathematical Formulation 386
10.3 Some Cases of Practical Interest 389
 10.3.1 Instantaneous Laser Source 389
 10.3.2 Exponential-Type Laser Source 394
 10.3.3 Exponential-Type Initial Temperature Distribution 402
10.4 Two-Layer System 408
11 A Unified Approach to Heat Source Problems 415
11.1 Introduction .. 415
11.2 Thermal Explosions 416
11.3 Continuously Operating Heat Sources 418
 11.3.1 A Moving Point-Heat Source 419
 11.3.2 A Moving Line-Heat Source 427
 11.3.3 A Moving Plane-Heat Source 433

Appendices 441

A Heat Conduction 441
 A.1 The Heat Conduction Equation 441
 A.2 Initial and Boundary Conditions 443
 A.3 Fundamental Solutions 444

B Table of Laplace Transforms 447
 B.1 Abelian Theorems 448
 B.2 Watson’s Lemma 448
 B.3 Tauberian Theorem 449
 B.4 Analytic Theorem 449
 B.5 Initial Value Theorem 449
 B.6 Final Value Theorem 450
 B.7 Efros’ Theorem 450
 B.8 Functional Operations 450
 B.9 Table of Laplace Transforms 451

C Integrals Dependent on Parameters 455
 C.1 Theorem on Continuity of \(J(y) := J_{a,b}(y; f; 1) \) 455
 C.1.1 Theorem on the Continuity of \(J_{a,\infty}(y; f; g) \) 455
 C.2 Theorem on Differentiation of \(J(y) := J_{a,\infty}(y; f; 1) \) 456
 C.2.1 Theorem on Differentiation \(J(y) = J_{a,\infty}(y; f; g) \) 456
 C.3 Theorem on the Integration of \(J(y) := J_{a,b}(y; f; 1) \) 456
 C.3.1 Theorem on the Integration of \(J(y) := J_{a,\infty}(y; f; g) \) 456
 C.4 Theorem on Differentiation of the Integral \(I(y) \) 456
 C.5 Theorem on the Uniform Convergence of \(J(y) = J_{a,\infty}(y; f; 1) \) 457
 C.6 Theorem on the Continuity of \(J(y) = J_{a,\infty}(y; f; 1) \) 457
 C.7 Theorem on the Differentiation of \(J_{a,\infty}(y; f; 1) \) 457
 C.8 Theorem on an Integration of \(J(y) := J_{a,\infty}(y; f; 1) \) 457
 C.9 Theorem on Reversing the Order of Integration (I) 457
 C.10 Theorem on Reversing the Order of Integration (II) 458
 C.11 Theorem (Abel’s Test) 458
 C.12 Comparison Test in Terms of Order of Infinities 458
 C.13 Theorem (Hölder’s Inequality) 459
 C.14 Differentiation of \(\Gamma(\alpha, u; \tau u) \) 459
 C.15 Differentiation of \(C_\Gamma(\alpha, u; \tau u) \) 459