The Nature and Tectonic Significance of Fault Zone Weakening

EDITED BY

R.E. HOLDSWORTH
University of Durham, UK

R.A. STRACHAN
Oxford Brookes University, UK

J.F. MAGLOUGHLIN
Colorado State University, USA

and

R.J. KNIPE
University of Leeds, UK

2001
Published by
The Geological Society
London
Contents

RUTTER, E., HOLDSWORTH, R.E. & KNIFE, R.J. The nature and tectonic significance of fault zone weakening: an introduction 1

Insights from neotectonic settings, deformation experiments and modelling studies
TOWNEND, J. & ZOBACK, M. Implications of earthquake focal mechanisms for the frictional strength of the San Andreas fault system 13
KOPF, A. Permeability variation across an active low-angle detachment, western Woodlark Basin (ODP Leg 180) and its implication for fault activation 23
MAIN, I., MAIR, K., KWON, O., ELPHICK, S. & NGWENYA, B. Experimental constraints on the mechanical and hydraulic properties of deformation bands in porous sandstones: a review 43
FURLONG, K.P., SHEAFFER, S.D. & MALSERVISI, R. Thermo-rheological controls on deformation within oceanic transforms 65

Insights from natural fault rocks
WARR, L.N. & COX, S. Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand 85
YAN, Y., VAN DER PLUUM, B.A. & PEACOR, D.R. Deformation microfabrics of clay gouge, Lewis Thrust, Canada: a case for fault weakening from clay transformation 103
MITRA, G. & ISMAT, Z. Microfracturing associated with reactivated fault zones and shear zones: what it can tell us about deformation history 113
STEFFEN, K., SELVERSTONE, J. & BREATLY, A. Episodic weakening and strengthening during synmetamorphic deformation in a deep crustal shear zone in the Alps 141

Geometric controls and fault system evolution
WOJTAL, S.F. The nature and origin of asymmetric arrays of shear surfaces in fault zones 171
BEACOM, L.E., HOLDSWORTH, R.E., MCCAFFREY, K.J.W. & ANDERSON, T.B. A quantitative study of the influence of pre-existing compositional and fabric heterogeneities upon fracture zone development during basement reactivation 195

Insights from lithosphere- to crustal-scale fault zones
TIKOFF, B., KELSO, P., MANDUCA, C., MARKLEY, M.J. & GILLASPY, J. Lithospheric and crustal reactivation of an ancient plate boundary: the assembly and disassembly of the Salmon River suture zone, Idaho, USA 213
SIMPSON, C., WHITMEYER, S.J., DE PAOR, D.G., GROMET, L.P., MIRO, R., KROL, M.A. & SHORT, H. Sequential ductile through brittle reactivation of major fault zones along the accretionary margin of Gondwana in Central Argentina 233
HATCHER, R.D. Rheological partitioning during multiple reactivation of the Paleozoic Brevard Fault Zone, Southern Appalachians, USA 255
TAVARNELLI, E., DECANDIA, F.A., RENDA, P., TRAMUTOLO, M., GUEGUEN, E. & ALBERTI, M. Repeated reactivation in the Apennine–Maghrebide system, Italy: an example of fault zone weakening? 271
It is recommended that reference to all or part of this book should be made in one of the following ways:
