Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE TO FIRST EDITION</td>
<td>xiii</td>
</tr>
<tr>
<td>PREFACE TO SECOND EDITION</td>
<td>xv</td>
</tr>
<tr>
<td>GENERAL READING FOR FIRST EDITION</td>
<td>xvii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS FOR FIRST EDITION</td>
<td>xix</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS FOR FIGURES AND TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>1. MEASUREMENT AND TRACEABILITY</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Measurement</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 What is a measurement?</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Measurement scales</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3 The problem of definition and the importance of purpose</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4 Decision, risk and uncertainty</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Temperature</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1 The evolution of the temperature scale</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2 Thermodynamic temperature</td>
<td>16</td>
</tr>
<tr>
<td>1.3.3 Meteorological temperatures</td>
<td>18</td>
</tr>
<tr>
<td>1.4 Traceability</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1 Defining traceability</td>
<td>21</td>
</tr>
<tr>
<td>1.4.2 Achieving traceability</td>
<td>23</td>
</tr>
<tr>
<td>1.5 The SI</td>
<td>24</td>
</tr>
<tr>
<td>1.5.1 The Metre Convention</td>
<td>24</td>
</tr>
<tr>
<td>1.5.2 The SI units and conventions</td>
<td>25</td>
</tr>
<tr>
<td>1.6 Documentary Standards</td>
<td>29</td>
</tr>
<tr>
<td>1.7 Laboratory Accreditation to ISO/IEC 17025</td>
<td>30</td>
</tr>
<tr>
<td>1.8 National Measurement System</td>
<td>32</td>
</tr>
<tr>
<td>Further Reading</td>
<td>34</td>
</tr>
<tr>
<td>2. UNCERTAINTY IN MEASUREMENT</td>
<td>37</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>37</td>
</tr>
<tr>
<td>2.2 Risk, Uncertainty and Error</td>
<td>38</td>
</tr>
</tbody>
</table>
2.3 Distributions, Mean and Variance 40
 2.3.1 Discrete distributions 41
 2.3.2 Continuous distributions 43
2.4 The Normal Distribution 45
2.5 Experimental Measurements of Mean and Variance 47
2.6 Evaluating Type A Uncertainties 50
 2.6.1 Evaluating uncertainties of single-valued quantities 51
 2.6.2 The Student's t-distribution 52
 2.6.3 Evaluating uncertainties for distributed quantities 54
2.7 Evaluating Type B Uncertainties 56
 2.7.1 Identification and recording of influences 57
 2.7.2 Theoretical evaluations 58
 2.7.3 Evaluations based on single subsidiary measurements 60
 2.7.4 Evaluations based on data provided from other sources 63
 2.7.5 Evaluations based on intuition and experience 65
2.8 Combining Uncertainties 66
2.9 Propagation of Uncertainty 69
2.10 Correlated Uncertainties 73
2.11 Interpolation 77
 2.11.1 Lagrange interpolation 78
 2.11.2 Propagation of uncertainty 79
 2.11.3 Interpolation error 81
 2.11.4 Other interpolations 82
2.12 Least-squares Fitting 83
 2.12.1 Propagation of uncertainty 85
2.13 The ISO Guide and its Application 89
 2.13.1 Application to non-normal distributions 89
 2.13.2 Application to distributed quantities 90
 2.13.3 The nature of confidence intervals 90
 2.13.4 Alternative methods 91
2.14 Reporting Uncertainties 91
 2.14.1 How many decimal places? 91
 2.14.2 Presentation of uncertainty statements 92
Further Reading 94

3 THE ITS-90 TEMPERATURE SCALE 95

3.1 Introduction 95
3.2 The Triple Point of Water 96
 3.2.1 The units of temperature 96
 3.2.2 The triple point of water — defining the unit 96
 3.2.3 Using the triple-point cell 99
 3.2.4 The ice point 102
3.3 ITS-90 105
 3.3.1 The principles of ITS-90 105
 3.3.2 The metal fixed points 105
CONTENTS

3.3.3 The cryogenic triple points 112
3.3.4 The cryogenic vapour-pressure points 113
3.3.5 Platinum resistance thermometry 114
3.3.6 Radiation thermometry 120
3.3.7 Cryogenic thermometry 121

3.4 The Propagation of Uncertainty on ITS-90 122
Further Reading 124

4 USE OF THERMOMETERS 125

4.1 Introduction 125
4.2 Heat Transfer 126
 4.2.1 Conduction 126
 4.2.2 Convection 127
 4.2.3 Radiation 129
4.3 Thermal Properties of Materials 131
 4.3.1 Thermal conductivity 131
 4.3.2 Heat capacity 132
 4.3.3 Latent heat 134
4.4 Errors in the Use of Thermometers 134
 4.4.1 Immersion errors 134
 4.4.2 Heat capacity errors 139
 4.4.3 Settling response errors 140
 4.4.4 Lag errors with steadily changing temperatures 143
 4.4.5 Radiation errors and shielding 145
4.5 Models and Methods 146
 4.5.1 Electrical analogue models 147
 4.5.2 Composite systems 148
 4.5.3 Temperature in non-equilibrium situations 151
 4.5.4 Immersion revisited 153
 4.5.5 Time constants revisited 155
 4.5.6 Guarding 156
 4.5.7 Temperature control 157
Further Reading 158

5 CALIBRATION 159

5.1 Introduction 159
5.2 The Meaning of Calibration 160
 5.2.1 What is a calibration? 160
 5.2.2 What is not a calibration? 161
5.3 Calibration Design 163
 5.3.1 The thermometer under test 163
 5.3.2 The client's needs 167
 5.3.3 Establishing the link to the SI 169
 5.3.4 Assessing the uncertainty 172
Further Reading 173
CONTENTS

5.3.5 Reliability and generic history 174
5.3.6 Recalibration and specific history 177

5.4 Documentary Requirements 179
5.4.1 Staff training 179
5.4.2 Calibration procedures 179
5.4.3 Uncertainty analysis and best measurement capability 180
5.4.4 Calibration records 182
5.4.5 Calibration certificates 182

5.5 Calibration Methods 183
5.5.1 Collating the information 183
5.5.2 A calibration procedure 185
5.5.3 Rising-temperature comparisons 187
5.5.4 Example: Calibration of a short-range working thermometer 189
5.5.5 Fixed-temperature comparisons 193
5.5.6 Example: Calibration of a reference thermometer 195

Further Reading 201

6 PLATINUM RESISTANCE THERMOMETRY 203

6.1 Introduction 203
6.2 Resistance in Metals 204
6.2.1 Introduction 204
6.2.2 The effects of temperature on resistance 204
6.2.3 The effects of impurities on resistance 205
6.3 Platinum Resistance Thermometers 206
6.3.1 Electrical properties of platinum thermometers 206
6.3.2 Construction of platinum thermometers 207
6.3.3 Standard platinum resistance thermometers 208
6.3.4 Partially supported platinum thermometers 208
6.3.5 Fully supported platinum thermometers 210
6.3.6 Platinum film thermometers 211
6.3.7 Sheathing 211
6.3.8 Lead wires 212
6.3.9 Electrical insulation 212

6.4 Resistance Measurement 212
6.4.1 General principles 213
6.4.2 Two-, three- and four-lead measurements 215
6.4.3 D.C. resistance measurement 217
6.4.4 A.C. resistance measurement 218
6.4.5 Verification and calibration of resistance bridges 220

6.5 Errors in Resistance Thermometry 221
6.5.1 Immersion errors 221
6.5.2 Lag and settling errors 222
6.5.3 Radiation errors 222
6.5.4 Self-heating 223
6.5.5 Mechanical shock and vibration 225
6.5.6 Thermal expansion effects 226
Contents

6.5.7 Other thermal effects 228
6.5.8 Contamination 228
6.5.9 Compensation and assessment of drift 229
6.5.10 Leakage effects 231
6.5.11 A.C. leakage effects 233
6.5.12 Electromagnetic interference 234
6.5.13 Lead-resistance errors 235
6.5.14 Thermoelectric effects 236
6.5.15 Reference resistor stability and accuracy 237
6.6 Choice and Use of Resistance Thermometers 238
6.6.1 Choosing and using a thermometer 238
6.6.2 Care and maintenance 240
6.7 Calibration of Resistance Thermometers 241
6.7.1 Calibration equations 241
6.7.2 Calibration at fixed points 242
6.7.3 Calibration by least squares 243
6.7.4 A calibration procedure 244
6.8 Other Resistance Thermometers 250
6.8.1 Thermistors 250
6.8.2 Copper and nickel resistance thermometers 251
6.8.3 Rhodium-iron thermometer 251
6.8.4 Germanium resistance thermometer 252
Further Reading 252

7 Liquid-in-Glass Thermometry 255

7.1 Introduction 255
7.2 Construction of Liquid-in-glass Thermometers 256
7.2.1 Solid-stem thermometers 256
7.2.2 Enclosed-scale thermometers 260
7.3 Errors in Liquid-in-glass Thermometry 262
7.3.1 Time constant effects 262
7.3.2 Heat capacity effects 263
7.3.3 Pressure effects 263
7.3.4 Bulb hysteresis and drift 265
7.3.5 Bore non-uniformity effects 266
7.3.6 Stiction 266
7.3.7 Separated columns 266
7.3.8 Errors in reading 270
7.3.9 Immersion errors 271
7.3.10 Scale errors 279
7.4 Choice and Use of Liquid-in-glass Thermometers 281
7.4.1 Range and type 282
7.4.2 Acceptance 284
7.4.3 Etching and engraving 286
7.4.4 Use of the thermometer 286
7.4.5 Organic liquids 287
8 THERMOCOUPLE THERMOMETRY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>295</td>
</tr>
<tr>
<td>8.2 The Thermoelectric Effects</td>
<td></td>
</tr>
<tr>
<td>8.2.1 The Peltier effect</td>
<td></td>
</tr>
<tr>
<td>8.2.2 The Thomson effect</td>
<td></td>
</tr>
<tr>
<td>8.2.3 The Seebeck effect</td>
<td></td>
</tr>
<tr>
<td>8.2.4 Exploiting the Seebeck effect to measure temperature</td>
<td></td>
</tr>
<tr>
<td>8.2.5 A model of a thermocouple measurement</td>
<td></td>
</tr>
<tr>
<td>8.3 Thermocouple Types</td>
<td></td>
</tr>
<tr>
<td>8.3.1 Standard thermocouple types</td>
<td>302</td>
</tr>
<tr>
<td>8.3.2 Rare-metal thermocouples</td>
<td>303</td>
</tr>
<tr>
<td>8.3.3 Base-metal thermocouples</td>
<td>305</td>
</tr>
<tr>
<td>8.3.4 Non-standard thermocouples</td>
<td>306</td>
</tr>
<tr>
<td>8.4 Construction</td>
<td></td>
</tr>
<tr>
<td>8.4.1 Juncions</td>
<td>310</td>
</tr>
<tr>
<td>8.4.2 Joins</td>
<td>311</td>
</tr>
<tr>
<td>8.4.3 Extension leads and compensating leads</td>
<td>313</td>
</tr>
<tr>
<td>8.4.4 Sheaths and thermowells</td>
<td>314</td>
</tr>
<tr>
<td>8.4.5 Mineral-insulated metal sheaths</td>
<td>315</td>
</tr>
<tr>
<td>8.5 Instrumentation</td>
<td></td>
</tr>
<tr>
<td>8.5.1 Reference junctions</td>
<td>317</td>
</tr>
<tr>
<td>8.5.2 Instrument types</td>
<td>320</td>
</tr>
<tr>
<td>8.5.3 Thermocouple calibrators</td>
<td>322</td>
</tr>
<tr>
<td>8.5.4 Alternative thermocouple circuits</td>
<td>323</td>
</tr>
<tr>
<td>8.6 Errors in Thermocouples</td>
<td></td>
</tr>
<tr>
<td>8.6.1 Thermal effects</td>
<td>325</td>
</tr>
<tr>
<td>8.6.2 Inhomogeneity errors</td>
<td>326</td>
</tr>
<tr>
<td>8.6.3 Isothermal errors</td>
<td>326</td>
</tr>
<tr>
<td>8.6.4 Reference-junction errors</td>
<td>328</td>
</tr>
<tr>
<td>8.6.5 Interference errors</td>
<td>328</td>
</tr>
<tr>
<td>8.6.6 Wire resistance errors</td>
<td>329</td>
</tr>
<tr>
<td>8.6.7 Linearisation errors</td>
<td>329</td>
</tr>
<tr>
<td>8.7 Choice and Use of Thermocouples</td>
<td></td>
</tr>
<tr>
<td>8.7.1 Selection of thermocouple type</td>
<td>329</td>
</tr>
<tr>
<td>8.7.2 Acceptance</td>
<td>330</td>
</tr>
<tr>
<td>8.7.3 Assembly</td>
<td>331</td>
</tr>
<tr>
<td>8.7.4 Inhomogeneity tests</td>
<td>332</td>
</tr>
</tbody>
</table>
9 RADIATION THERMOMETRY

9.1 Introduction 343
9.2 Blackbodies and Blackbody Radiation 344
9.3 Spectral Band Thermometers 348
9.4 Errors in Spectral Band Thermometry 350
 9.4.1 Errors in emissivity 352
 9.4.2 Reflection errors 356
 9.4.3 Absorption errors 360
 9.4.4 Transmission errors 362
 9.4.5 Non-thermal emission 362
 9.4.6 Scattering errors 363
 9.4.7 Size-of-source effects 363
 9.4.8 Ambient temperature dependence 365
 9.4.9 Vignetting 365
 9.4.10 Linearisation 366
 9.4.11 Instrumental emissivity 366
9.5 Use and Care of Radiation Thermometers 366
 9.5.1 Choosing a radiation thermometer 366
 9.5.2 Care and maintenance 368
 9.5.3 Using the thermometer 368
9.6 Practical Blackbodies 370
 9.6.1 Blackbody principles 370
 9.6.2 Ice-point blackbody 371
 9.6.3 Errors in blackbodies 372
9.7 Calibration of Radiation Thermometers 375
 9.7.1 Calibration methods 375
 9.7.2 Calibration equations 377
 9.7.3 Tungsten strip lamps 378
 9.7.4 Calibrating a radiation thermometer 380
9.8 Other Radiation Thermometers 385
 9.8.1 The disappearing-filament thermometer 385
 9.8.2 The ratio thermometer 385
 9.8.3 Multi-spectral radiation thermometers 387
 9.8.4 Total radiation thermometers 388
 9.8.5 Special-purpose thermometers for plastic and glass 390
 9.8.6 Fibre-optic thermometers 391
Further Reading 392
APPENDIX B	THE DIFFERENCES BETWEEN ITS-90 AND IPTS-68	395
APPENDIX C	RESISTANCE THERMOMETER REFERENCE TABLES	397
APPENDIX D	THERMOCOUPLE REFERENCE TABLES	399
INDEX		417