Mamoru Mimura
Hirosi Toda

Topology of Lie Groups, I and II

American Mathematical Society
Providence, Rhode Island
Contents

Topology of Lie Groups, I 1

In Place of a Proper Preface 3

CHAPTER 1. Classical Groups 5
§1. Topological groups and homogeneous spaces 5
§2. Classical groups 14
§3. Diagonalization of normal matrices 24
§4. The exponential map of matrices and the polar decomposition of classical groups 31
§5. Differentiable manifolds and Lie groups 36

CHAPTER 2. Covering Spaces and Fibre Bundles 47
§1. Fundamental groups and covering spaces 47
§2. Fundamental properties of fibre bundles 55
§3. Homotopy groups and fibrations 62
§4. Covering groups 69
§5. Lie groups and Lie algebras 76
§6. Classifying spaces 84

CHAPTER 3. Cohomology Groups of Classical Groups and Their Homogeneous Spaces 93
§1. The cohomology ring of topological spaces 93
§2. Cohomology of fibrations (the Serre spectral sequence) 105
§3. Applications of the Gysin exact sequence 115
§4. The Leray-Hirsch theorem and the action of the Weyl group 126
§5. Characteristic classes and the relations among them 135
§6. Cohomology of symmetric spaces of classical type 146

CHAPTER 4. The Periodicity of $K$F-Groups and the Homotopy Groups 155
§1. Fundamental notions of the homotopy theory 155
§2. Homology rings and Hopf algebras of $H$-spaces 168
§3. Symmetric spaces of infinite dimension 179
§4. Vector bundles and $K$F-groups 190
§5. The periodicity of $KF$-groups 200
§6. Homotopy groups of classical groups and homogeneous spaces 211

Postscript 225

Topology of Lie Groups, II 235

Preface 237

CHAPTER 5. Compact Lie Groups 239
§1. Integration on compact groups 239
§2. Representations of compact groups 247
§3. Maximal tori 255
§4. Roots and the Weyl groups 263
§5. The fundamental group and the decomposition of a compact connected Lie group 272
§6. Simple roots and the Dynkin diagram 283
§7. Subgroups of maximal rank 297

CHAPTER 6. The Bott-Morse Theory 307
§1. Geodesics and Morse theory 307
§2. Infinitesimal $K$-motion and the variational completeness 316
§3. Variational completeness of a symmetric pair 322
§4. Applications to compact Lie groups and symmetric spaces 330
§5. The rank and the type of a compact connected Lie group 341
§6. The Bott-Samelson $K$-cycle 348
§7. Loop spaces and homotopy groups of the exceptional groups 356

CHAPTER 7. Cohomology of Exceptional Groups 365
§1. Hopf algebras and cohomology of $H$-spaces 365
§2. The comparison theorem and the transgression theorem 374
§3. The action of the Weyl groups and the classifying space 388
§4. Cohomology operations and the cohomology of Eilenberg–Mac Lane spaces 402
§5. Mod $p$ cohomology of the exceptional groups for $p \neq 2$ 410
§6. Mod 2 cohomology of the exceptional groups 419

Postscript 437

Cumulative index 449