A Course in Combinatorics
SECOND EDITION

J. H. van Lint
Technical University of Eindhoven

and

R. M. Wilson
California Institute of Technology
CONTENTS

Preface to the first edition xi
Preface to the second edition xiii

1. Graphs 1
 Terminology of graphs and digraphs, Eulerian circuits, Hamiltonian circuits

2. Trees 12
 Cayley's theorem, spanning trees and the greedy algorithm, search trees, strong connectivity

3. Colorings of graphs and Ramsey's theorem 24
 Brooks' theorem, Ramsey's theorem and Ramsey numbers, the Lovasz sieve, the Erdos-Szekeres theorem

4. Turan's theorem and extremal graphs 37
 Turan's theorem and extremal graph theory

5. Systems of distinct representatives 43
 Bipartite graphs, P. Hall's condition, SDRs, Konig's theorem, Birkhoff's theorem

6. Dilworth's theorem and extremal set theory 53
 Partially ordered sets, Dilworth's theorem, Sperner's theorem, symmetric chains, the Erdos-Ko-Rado theorem

7. Flows in networks 61
 The Ford-Fulkerson theorem, the integrality theorem, a generalization of Birkhoff's theorem, circulations

8. De Bruijn sequences 71
 The number of De Bruijn sequences
9. Two \((0,1,\ast)\) problems: addressing for graphs and a hash-coding scheme

- Quadratic forms, Winkler's theorem, associative block designs

10. The principle of inclusion and exclusion; inversion formulae

- Inclusion-exclusion, derangements, Euler indicator, Möbius function, Möbius inversion, Burnside's lemma, problème des ménages

11. Permanents

- Bounds on permanents, Schrijver's proof of the Minc conjecture, Fekete's lemma, permanents of doubly stochastic matrices

12. The Van der Waerden conjecture

- The early results of Marcus and Newman, London's theorem, Egoritsjev's proof

13. Elementary counting; Stirling numbers

- Stirling numbers of the first and second kind, Bell numbers, generating functions

14. Recursions and generating functions

- Elementary recurrences, Catalan numbers, counting of trees, Joyal theory, Lagrange inversion

15. Partitions

- The function \(p_k(n)\), the partition function, Ferrers diagrams, Euler's identity, asymptotics, the Jacobi triple product identity, Young tableaux and the hook formula

16. \((0,1)\)-Matrices

- Matrices with given line sums, counting \((0,1)\)-matrices

17. Latin squares

- Orthogonal arrays, conjugates and isomorphism, partial and incomplete Latin squares, counting Latin squares, the Evans conjecture, the Dinitz conjecture

18. Hadamard matrices, Reed–Muller codes

- Hadamard matrices and conference matrices, recursive constructions, Paley matrices, Williamson's method, excess of a Hadamard matrix, first order Reed–Muller codes
19. Designs
The Erdős–De Bruijn theorem, Steiner systems, balanced incomplete block designs, Hadamard designs, counting, (higher) incidence matrices, the Wilson–Petrenjuk theorem, symmetric designs, projective planes, derived and residual designs, the Bruck–Ryser–Chowla theorem, constructions of Steiner triple systems, write-once memories

20. Codes and designs
Terminology of coding theory, the Hamming bound, the Singleton bound, weight enumerators and MacWilliams' theorem, the Assmus–Mattson theorem, symmetry codes, the Golay codes, codes from projective planes

21. Strongly regular graphs and partial geometries
The Bose–Mesner algebra, eigenvalues, the integrality condition, quasisymmetric designs, the Krein condition, the absolute bound, uniqueness theorems, partial geometries, examples, directed strongly regular graphs, neighborhood regular graphs

22. Orthogonal Latin squares
Pairwise orthogonal Latin squares and nets, Euler's conjecture, the Bose–Parker–Shrikhande theorem, asymptotic existence, orthogonal arrays and transversal designs, difference methods, orthogonal subsquares

23. Projective and combinatorial geometries
Projective and affine geometries, duality, Pasch's axiom, Desargues' theorem, combinatorial geometries, geometric lattices, Greene's theorem

24. Gaussian numbers and q-analogues
Chains in the lattice of subspaces, q-analogue of Sperner's theorem, interpretation of the coefficients of the Gaussian polynomials, spreads

25. Lattices and Möbius inversion
The incidence algebra of a poset, the Möbius function, chromatic polynomial of a graph, Weisner's theorem, complementing permutations of geometric lattices, connected labeled graphs, MDS codes

26. Combinatorial designs and projective geometries
Arcs and subplanes in projective planes, blocking sets, quadratic and Hermitian forms, unitals, generalized quadrangles, Möbius planes
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.</td>
<td>Difference sets and automorphisms</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>Block's lemma, automorphisms of symmetric designs, Paley-Todd and Stanton-Sprott difference sets, Singer's theorem</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Difference sets and the group ring</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>The Multiplier Theorem and extensions, homomorphisms and further necessary conditions</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Codes and symmetric designs</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>The sequence of codes of a symmetric design, Wilbrink's theorem</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Association schemes</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Examples, the eigenmatrices and orthogonality relations, formal duality, the distribution vector of a subset, Delsarte's inequalities, polynomial schemes, perfect codes and tight designs</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>(More) algebraic techniques in graph theory</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>Tournaments and the Graham-Pollak theorem, the spectrum of a graph, Hoffman's theorem, Shannon capacity, applications of interlacing and Perron-Frobenius</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Graph connectivity</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>Vertex connectivity, Menger's theorem, Tutte connectivity</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Planarity and coloring</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>The chromatic polynomial, Kuratowski's theorem, Euler's formula, the Five Color Theorem, list-colorings</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>Whitney Duality</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>Whitney duality, circuits and cutsets, MacLane's theorem</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>Embeddings of graphs on surfaces</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Embeddings on arbitrary surfaces, the Ringel-Youngs theorem, the Heawood conjecture, the Edmonds embedding technique</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>Electrical networks and squared squares</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>The matrix-tree theorem, De Bruijn sequences, the network of a squared rectangle, Kirchhoff's theorem</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>Pólya theory of counting</td>
<td>522</td>
</tr>
<tr>
<td></td>
<td>The cycle index of a permutation group, counting orbits, weights, necklaces, the symmetric group, Stirling numbers</td>
<td></td>
</tr>
</tbody>
</table>
Contents

38. Baranyai's theorem
 One-factorizations of complete graphs and complete designs
 536

Appendix 1. Hints and comments on problems
 Hints, suggestions, and comments on the problems in each chapter
 542

Appendix 2. Formal power series
 Formal power series ring, formal derivatives, inverse functions, residues, the Lagrange-Bürmann formula
 578

Name Index
 584

Subject Index
 590