Contents

Introduction v

1 Multivalued maps: general properties 1
 1.1 Continuity of multimaps 2
 1.2 Operations on multimaps. Selections and approximations 8
 1.2.1 Union and intersection of multimaps 8
 1.2.2 Composition and Cartesian product of multimaps 14
 1.2.3 Algebraic operations on multimaps 17
 1.2.4 Selections and approximations 19
 1.3 Measurable multimaps and the superposition multioperator 20
 1.3.1 Measurable multimaps and multivalued integral 20
 1.3.2 The Carathéodory conditions and the Filippov Implicit
 Function Lemma 26
 1.3.3 The superposition multioperator 28
 Bibliographic notes 31

2 Measures of noncompactness and condensing multimaps 33
 2.1 Measures of noncompactness 33
 2.1.1 Basic notions 33
 2.1.2 The expression for the Hausdorff MNC in a separable
 Banach space 35
 2.1.3 MNC in spaces of continuous functions 36
 2.2 Condensing multimaps 41
 Bibliographic notes 47

3 Topological degree theory for condensing multifields 49
 3.1 The relative topological degree and fixed points of compact multimaps 49
 3.2 Topological degree for condensing multifields 55
 3.2.1 The definition of the degree 55
 3.2.2 The relative topological degree for fundamentally restrictive
 multifields defined on the boundary 57
 3.2.3 Topological degree for condensing multifields via compact
 homotopy approximations 58
 3.3 The evaluation of the degree 60
 3.3.1 Some fixed point theorems 60
Contents

3.3.2 Topological degree of equivariant multifields 63
3.4 The topological degree for condensing nonconvex-valued multimaps 67
 3.4.1 Vietoris pairs and multimaps 67
 3.4.2 The coincidence index for a Vietoris pair in a finite-dimensional space 69
 3.4.3 The topological degree for a completely fundamentally restrictible Vietoris multimap 70
 3.4.4 Remark on single-valued approximations of nonconvex valued multimaps 75
3.5 Some properties of the fixed points set 77
3.6 Solvability of systems of inclusions with condensing multioperators 80
 3.6.1 Preliminaries ... 80
 3.6.2 Systems of inclusions 85
 3.6.3 Application: optimal control for a neutral functional differential equation 91

Bibliographic notes ... 97

4 Semigroups and measures of noncompactness 99
 4.1 Semigroups: general facts 99
 4.2 Measures of noncompactness in function spaces: measurability and integrability 106
 4.3 Condensing semigroups 117

Bibliographic notes ... 121

5 Semilinear differential inclusions: initial problem 122
 5.1 Integral multioperator 122
 5.2 Existence and continuous dependence theorems 129
 5.2.1 Local and global existence results. Regularity properties of solutions. Some examples 129
 5.2.2 Optimization of semilinear feedback control systems .. 139
 5.2.3 On the index of the solutions set .. 142
 5.2.4 Continuous dependence of the solutions set on parameters and initial data 143
 5.3 The structure of the solutions set 147
 5.4 The averaging principle 153
 5.5 On inclusions with almost lower semicontinuous nonlinearities 161

Bibliographic notes ... 172

6 Semilinear inclusions: periodic problems 175
 6.1 The integral multioperator for a periodic problem 175
 6.2 The averaging principle for a periodic problem 187
 6.3 The translation multioperator 197
6.3.1 The translation multioperator along the solutions of semilinear
differential inclusions ... 197
6.3.2 Dissipative differential inclusions: periodic solutions and
attractors .. 207

Bibliographic notes .. 211

Bibliography ... 213

Index ... 229