Contents

List of Illustrations
List of Tables
Preface
1 The Euclidean Plane
 1.1 The Vector Structure
 1.2 The Scalar Product
 1.3 Length, Distance and Angle
 1.4 The Complex Structure
 1.5 Lines
 1.6 Projection to Lines
2 Parametrized Curves
 2.1 The General Concept
 2.2 Self Crossings
 2.3 Tangent and Normal Vectors
 2.4 Tangent and Normal Lines
3 Classes of Special Curves
 3.1 The Standard Conics
 3.2 General Algebraic Curves
 3.3 Trochoids
4 Arc Length
 4.1 Arc Length
 4.2 Parametric Equivalence
 4.3 Unit Speed Curves
 4.4 Involutes
5 Curvature
 5.1 The Moving Frame
 5.2 The Concept of Curvature
 5.3 Calculating the Curvature
5.4 Inflexions
5.5 Limiting Behaviour
6 Existence and Uniqueness
6.1 Isometries
6.2 Fixed Points and Formulas
6.3 Congruent Curves
6.4 The Uniqueness Theorem
7 Contact with Lines
7.1 The Factor Theorem
7.2 Multiplicity of a Zero
7.3 Contact with Lines
7.4 Inflexions and Undulations
7.5 Cusps
8 Contact with Circles
8.1 Contact Functions
8.2 Evolutes
8.3 Parallels
9 Vertices
9.1 The Concept of a Vertex
9.2 Appearance of Vertices on the Evolute
9.3 The Four Vertex Theorem
10 Envelopes
10.1 Envelopes
10.2 The Envelope Theorem
10.3 Natural Envelopes in Geometry
11 Orthotomics
11.1 Reflexions
11.2 Orthotomics
11.3 Orthotomics of Non-Regular Curves
11.4 Irregular Points on Orthotomics
11.5 Antiorthotomics
12 Caustics by Reflexion
12.1 Caustics of a Curve
12.2 Caustics as Evolutes
12.3 Sources at Infinity
12.4 Orthotomics as Envelopes
13 Planar Kinematics
13.1 Historical Genesis
13.2 Planar Motions
13.3 General Roulettes
Contents

14 Centrodes 190
14.1 Generic Parameters 190
14.2 Generic Parameters for Roulettes 192
14.3 Fixed and Moving Centrodes 194
15 Geometry of Trajectories 199
15.1 Equivalence of Motions 200
15.2 Cusps on Trajectories 203
15.3 Inflexions on Trajectories 205
15.4 Vertices on Trajectories 209
Index 211