Contents

X-ray photograph of zinc blende (Friedrich, Knipping and von Laue, 1912) xiv
X-ray photograph of deoxyribonucleic acid (Franklin and Gosling, 1952) xv

1 Crystals and crystal structures
1.1 The nature of the crystalline state 1
1.2 Constructing crystals from close-packed hexagonal layers of atoms 5
1.3 Unit cells of the hcp and ccp structures 6
1.4 Constructing crystals from square layers of atoms 9
1.5 Constructing body-centred cubic crystals 9
1.6 Interstitial structures 10
1.7 Some simple ionic and covalent structures 18
1.8 Representing crystals in projection: crystal plans 18
1.9 Stacking faults and twins 20
1.10 Introduction to some more complex crystal structures 26
 1.10.1 Tetrahedral and octahedral structures—silicon carbide and alumina 26
 1.10.2 Silicate structures 28
 1.10.3 The structures of carbon 33
Exercises 40

2 Two-dimensional patterns, lattices and symmetry 41
2.1 Approaches to the study of crystal structures 41
2.2 Two-dimensional patterns and lattices 42
2.3 Two-dimensional symmetry elements 44
2.4 The five plane lattices 47
2.5 The seventeen plane groups 50
2.6 One-dimensional symmetry: border or frieze patterns 55
2.7 Symmetry in art and design: counterchange patterns 55
2.8 Non-periodic patterns and tilings 59
Exercises 63

3 Bravais lattices and crystal systems 67
3.1 Introduction 67
3.2 The fourteen space (Bravais) lattices 67
3.3 The symmetry of the fourteen Bravais lattices: crystal systems 71
3.4 The coordination or environments of Bravais lattice points: space-filling polyhedra 74
Exercises 77
4 Crystal symmetry: point groups, space groups, symmetry-related properties and quasiperiodic crystals

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Symmetry and crystal habit</td>
<td>79</td>
</tr>
<tr>
<td>4.2 The thirty-two crystal classes</td>
<td>80</td>
</tr>
<tr>
<td>4.3 Centres and inversion axes of symmetry</td>
<td>81</td>
</tr>
<tr>
<td>4.4 Crystal symmetry and properties</td>
<td>85</td>
</tr>
<tr>
<td>4.5 Translational symmetry elements</td>
<td>89</td>
</tr>
<tr>
<td>4.6 Space groups</td>
<td>92</td>
</tr>
<tr>
<td>4.7 Bravais lattices, space groups and crystal structures</td>
<td>95</td>
</tr>
<tr>
<td>4.8 Quasiperiodic crystals or crystalloids</td>
<td>100</td>
</tr>
<tr>
<td>Exercises</td>
<td>103</td>
</tr>
</tbody>
</table>

5 Describing lattice planes and directions in crystals: Miller indices and zone axis symbols

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>104</td>
</tr>
<tr>
<td>5.2 Indexing lattice directions—zone axis symbols</td>
<td>105</td>
</tr>
<tr>
<td>5.3 Indexing lattice planes—Miller indices</td>
<td>106</td>
</tr>
<tr>
<td>5.4 Miller indices and zone axis symbols in cubic crystals</td>
<td>109</td>
</tr>
<tr>
<td>5.5 Lattice indices and zone axis symbols in cubic crystals</td>
<td>110</td>
</tr>
<tr>
<td>5.6 Zones, zone axes and the zone law, the addition rule</td>
<td>112</td>
</tr>
<tr>
<td>5.6.1 The Weiss zone law or zone equation</td>
<td>112</td>
</tr>
<tr>
<td>5.6.2 Zone axis at the intersection of two planes</td>
<td>112</td>
</tr>
<tr>
<td>5.6.3 Plane parallel to two directions</td>
<td>112</td>
</tr>
<tr>
<td>5.6.4 The addition rule</td>
<td>113</td>
</tr>
<tr>
<td>5.7 Indexing in the trigonal and hexagonal systems: Weber symbols and</td>
<td>113</td>
</tr>
<tr>
<td>Miller-Bravais indices</td>
<td>115</td>
</tr>
<tr>
<td>5.8 Transforming Miller indices and zone axis symbols</td>
<td>115</td>
</tr>
<tr>
<td>5.9 Transformation matrices for trigonal crystals with</td>
<td>118</td>
</tr>
<tr>
<td>rhombohedral lattices</td>
<td>119</td>
</tr>
<tr>
<td>5.10 A simple method for inverting a 3×3 matrix</td>
<td>120</td>
</tr>
<tr>
<td>Exercises</td>
<td>120</td>
</tr>
</tbody>
</table>

6 The reciprocal lattice

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>122</td>
</tr>
<tr>
<td>6.2 Reciprocal lattice vectors</td>
<td>122</td>
</tr>
<tr>
<td>6.3 Reciprocal lattice unit cells</td>
<td>125</td>
</tr>
<tr>
<td>6.4 Reciprocal lattice cells for cubic crystals</td>
<td>128</td>
</tr>
<tr>
<td>6.5 Proofs of some geometrical relationships using reciprocal lattices</td>
<td>130</td>
</tr>
<tr>
<td>6.5.1 Relationships between a, b, c and $a^$, $b^$, c^*</td>
<td>130</td>
</tr>
<tr>
<td>6.5.2 The addition rule</td>
<td>130</td>
</tr>
<tr>
<td>6.5.3 The Weiss zone law or zone equation</td>
<td>131</td>
</tr>
</tbody>
</table>
Contents

6.5.4 d-spacing of lattice planes (hkl) 132
6.5.5 Angle ρ between plane normals (h₁k₁l₁) and (h₂k₂l₂) 132
6.5.6 Definition of a*, b*, c*, in terms of a, b, c 132
6.5.7 Zone axis at intersection of planes (h₁k₁l₁) and (h₂k₂l₂) 133
6.5.8 A plane containing two directions [u₁v₁w₁] and [u₂v₂w₂] 133
Exercises 133

7 The diffraction of light 134
 7.1 Introduction 134
 7.2 Simple observations of the diffraction of light 136
 7.3 The nature of light: coherence, scattering and interference 140
 7.4 Analysis of the geometry of diffraction patterns from gratings and nets 143
 7.5 The resolving power of optical instruments, the telescope, camera, microscope and the eye 150
Exercises 159

8 X-ray diffraction: the contributions of Max von Laue, W. H. and W. L. Bragg and P. P. Ewald 160
 8.1 Introduction 160
 8.2 Laue’s analysis of X-ray diffraction: the three Laue equations 161
 8.3 Bragg’s analysis of X-ray diffraction: Bragg’s law 163
 8.4 Ewald’s synthesis: the reflecting sphere construction 166
Exercises 169

9 The diffraction of X-rays 170
 9.1 Introduction 170
 9.2 The intensities of X-ray diffracted beams: the structure factor equation and its applications 174
 9.3 The broadening of diffracted beams: reciprocal lattice points and nodes 180
 9.4 Fixed θ, varying λ X-ray techniques: the Laue method 183
 9.5 Fixed λ, varying θ X-ray techniques: oscillation, rotation and precession methods 185
 9.5.1 The oscillation method 185
 9.5.2 The rotation method 188
 9.5.3 The precession method 188
 9.6 X-ray diffraction from single crystal thin films and multilayers 192
 9.7 X-ray (and neutron) diffraction from ordered crystals 196
Exercises 199
Contents

10 X-ray diffraction of polycrystalline materials 200

10.1 Introduction 200
10.2 The geometrical basis of polycrystalline (powder) X-ray diffraction techniques 201
10.3 Some applications of X-ray techniques in polycrystalline materials 210
 10.3.1 Accurate lattice parameter measurements 210
 10.3.2 Identification of unknown phases 211
 10.3.3 Measurement of crystal (grain) size 213
 10.3.4 Measurement of internal elastic strains 214
10.4 Preferred orientation (texture, fabric) and its measurement 214
 10.4.1 Fibre textures 215
 10.4.2 Sheet textures 216
10.5 X-ray diffraction pattern of DNA: simulation by light diffraction 219
Exercises 225

11 Electron diffraction and its applications 228

11.1 Introduction 228
11.2 The Ewald reflecting-sphere construction for electron diffraction 229
11.3 The analysis of electron diffraction patterns 231
11.4 Applications of electron diffraction 234
 11.4.1 Determining orientation relationships between crystals 234
 11.4.2 Identification of polycrystalline materials 236
 11.4.3 Identification of quasiperiodic crystals 237
Exercises 238

12 The stereographic projection and its uses 242

12.1 Introduction 242
12.2 Construction of the stereographic projection of a cubic crystal 246
12.3 Manipulation of the stereographic projection: use of the Wulff net 249
12.4 Stereographic projections of non-cubic crystals 251
12.5 Applications of the stereographic projection 254
 12.5.1 Representation of point group symmetry 254
 12.5.2 Representation of orientation relationships 255
 12.5.3 Representation of preferred orientation (texture or fabric) 257
Exercises 260

Appendix 1 Useful components for crystallography model-building and suppliers 261
Appendix 2 Computer programs in crystallography 263
Appendix 3 Biographical notes on crystallographers and scientists mentioned in the text 267
Appendix 4 Some useful crystallographic relationships 287
Contents

Appendix 5	A simple introduction to vectors and complex numbers and their use in crystallography	290
Appendix 6	Systematic absences (extinctions) in X-ray diffraction and double diffraction in electron diffraction patterns	297
Answers to Exercises	306	
Further reading	317	
Index	324	