EARTH'S CLIMATE
PAST and FUTURE
William F. Ruddiman
University of Virginia
Lamont-Doherty Earth Observatory
W. H. Freeman and Company
New York
Brief Contents

PART I Framework of Climate Science 1

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview of Climate Science</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Earth's Climate System Today</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Climate Archives, Data, and Models</td>
<td>54</td>
</tr>
</tbody>
</table>

PART II Tectonic-Scale Climate Change 84

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CO₂ and Long-Term Climate</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>Plate Tectonics and Climate</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>Greenhouse Earth</td>
<td>129</td>
</tr>
<tr>
<td>7</td>
<td>Back into the Icehouse: The Last 55 Million Years</td>
<td>147</td>
</tr>
</tbody>
</table>

PART III Orbital-Scale Climate Change 172

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Astronomical Control of Solar Radiation</td>
<td>174</td>
</tr>
<tr>
<td>9</td>
<td>Insolation Control of Monsoons</td>
<td>193</td>
</tr>
<tr>
<td>10</td>
<td>Insolation Control of Ice Sheets</td>
<td>210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Orbital-Scale Changes in Carbon Dioxide and Methane</td>
<td>234</td>
</tr>
<tr>
<td>12</td>
<td>Orbital-Scale Interactions in the Climate System</td>
<td>254</td>
</tr>
</tbody>
</table>

PART IV Deglacial and Millennial Climate Changes 274

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>The Last Glacial Maximum</td>
<td>276</td>
</tr>
<tr>
<td>14</td>
<td>Climate During and Since the Last Glaciation</td>
<td>301</td>
</tr>
<tr>
<td>15</td>
<td>Millennial Oscillations in Climate</td>
<td>330</td>
</tr>
</tbody>
</table>

PART V Historical and Future Climate Change 352

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Historical Changes in Climate</td>
<td>354</td>
</tr>
<tr>
<td>17</td>
<td>Humans and Climate Change</td>
<td>383</td>
</tr>
<tr>
<td>18</td>
<td>Climate in the Twentieth Century</td>
<td>405</td>
</tr>
<tr>
<td>19</td>
<td>Climate Change in the Next 100 to 1000 Years</td>
<td>423</td>
</tr>
</tbody>
</table>
PART I Framework of Climate Science

CHAPTER 1 Overview of Climate Science

Climate and Climate Change
1 Geologic Time
1 How This Book Is Organized

Development of Climate Science
1 How Scientists Study Climate Change

Overview of the Climate System
1 Components of the Climate System
1 Climate Forcing
1 Climate System Responses
1 Time Scales of Forcing versus Response
1 Response Rates and Interactions Within the Climate System
1 Feedbacks in the Climate System

Tools of Climate Science: Temperature Scales

CHAPTER 2 Earth’s Climate System Today

Heating Earth
2-1 Incoming Solar Radiation
2-2 Receipt and Storage of Solar Heat
2-3 Heat Transformation

Heat Transfer in Earth’s Atmosphere
2-4 Overcoming Stable Layering in the Atmosphere
2-5 Tropical-Subtropical Atmospheric Circulation
2-6 Atmospheric Circulation at Middle and High Latitudes

Heat Transfer in Earth’s Oceans
2-7 The Surface Ocean
2-8 Deep-Ocean Circulation

Ice on Earth
2-9 Sea Ice
2-10 Glacial Ice

Earth’s Biosphere
2-11 Response of the Biosphere to the Physical Climate System
2-12 Effects of the Biosphere on the Climate System

Looking Deeper into Climate Science: The Structure of Earth’s Atmosphere
Climate Interactions and Feedbacks: Albedo/Temperature
Climate Interactions and Feedbacks: Water in the Climate System
Climate Interactions and Feedbacks: Water Vapor
Climate Interactions and Feedbacks: The Coriolis Effect
Climate Interactions and Feedbacks: Vegetation-Climate Feedbacks

CHAPTER 3 Climate Archives, Data, and Models

Climate Archives
3-1 Types of Archives
3-2 Dating Climate Records
3-3 Climate Resolution

Climate Data
3-4 Biotic Data
3-5 Geological and Geochemical Data

Climate Models
3-6 Physical Climate Models
3-7 Geochemical (Mass Balance) Models

PART II Tectonic-Scale Climate Change

CHAPTER 4 CO₂ and Long-Term Climate

Greenhouse Worlds
The Faint Young Sun Paradox
Carbon Exchanges between Rocks and the Atmosphere
4-1 Volcanic Input of Carbon from Rocks to the Atmosphere
4-2 Chemical Weathering Removal of CO₂ from the Atmosphere
Natural Causes of Historical Climate Changes 376
16-8 Orbital-Scale and Milennial-Scale Controls on Climate 376
16-9 Century-Scale and Decadal-Scale Factors: Solar Forcing 376
16-10 Annual-Scale Factors: Volcanoes and El Niño 379
Tools of Climate Science: Analyzing Tree Rings 362
Climate Interactions and Feedbacks: El Niño 366
Climate Debate: Satellites vs. Surface Temperatures 372

CHAPTER 17 Humans and Climate Change 383
The Impact of Climate on Human Evolution 384
17-1 Evidence of Human Evolution 384
17-2 Did Climate Change Drive Human Evolution? 387
17-3 Testing Climatic Hypotheses with Fragmentary Records 389
The Impact of Climate on Early Civilizations 391
17-4 Did Climate Affect the Origin of Agriculture? 391
17-5 Sea Level Rise and the Origin of Flood Legends 392
17-6 Possible Impacts of Climate on Other Civilizations 393
Early Impacts of Humans on Climate 394
17-7 Early Impacts of Humans on Large Mammals? 394
17-8 Impacts of Land Clearance on Climate? 395
The Impacts of Humans on the Atmosphere: The Last 250 Years 396
17-9 Increases in Carbon Dioxide (CO₂) 396
17-10 Increases in Methane (CH₄) 398
17-11 Increases in Sulfate Aerosols 399
17-12 Increases in Chlorofluorocarbons and Destruction of Ozone 401
Climate Debate: Impacts of Humans on CH₄ Levels for 5000 Years? 400

CHAPTER 18 Climate in the Twentieth Century 405
The Impact of Natural Variations in Climate 406
18-1 Natural Variations on Different Time Scales 406
Earth’s Sensitivity to Greenhouse Gases 408
18-2 Sensitivity to Greenhouse Gases in Climate Models 408
18-3 Sensitivity to Greenhouse Gases in Earth’s Climate History 412
Causes of Global Warming in the Twentieth Century 414
18-4 Delayed Warming: The Thermal Inertia of the Ocean 415
18-5 Have Smokestack Sulfates Canceled Part of the Greenhouse Warming? 417
18-6 Summary of CO₂ Sensitivity 419
The Greenhouse Debate: Proponents and Skeptics 419
Climate Interactions and Feedbacks: Direct Radiative Forcing 410
Climate Interactions and Feedbacks: Deep-Ocean Warming in the Twentieth Century? 416

CHAPTER 19 Climate Change in the Next 100 to 1000 Years 423
Natural Variations in Climate 424
Future Human Impacts on Climate 425
19-1 Projected Carbon Emissions 425
19-2 Projected CO₂ Concentrations in the Atmosphere 426
19-3 Other Human Effects on the Atmosphere 428
Future Climate Change Caused by Increased CO₂ 429
19-4 Projected Temperature Changes 429
19-5 Partial Analog from Earth’s History: 2xCO₂ and 4xCO₂ Worlds 430
19-6 Greenhouse Surprises? 435
Monitoring Greenhouse Warming: The Next Few Decades 435
19-7 Measuring Changes in Ice Sheet Thickness 436
19-8 Measuring Ocean Warming and Expansion 437
The Impacts of Future Increases in Greenhouse Gases on Humans 438
Climate Interactions and Feedbacks: Will Frozen Methane Melt? 428
Glossary 443
Index 451