CONTENTS

Preface vii

1 Basic Results 1
 1.1 Short time existence 1
 1.2 Facts from the parabolic theory 15
 1.3 The evolution of geometric quantities 19

2 Invariant Solutions for the Curve Shortening Flow 27
 2.1 Travelling waves 27
 2.2 Spirals ... 29
 2.3 The support function of a convex curve 33
 2.4 Self-similar solutions 35

3 The Curvature-Eikonal Flow for Convex Curves 45
 3.1 Blaschke Selection Theorem 45
 3.2 Preserving convexity and shrinking to a point 47
 3.3 Gage-Hamilton Theorem 51
 3.4 The contracting case of the ACEF 59
 3.5 The stationary case of the ACEF 73
 3.6 The expanding case of the ACEF 80

4 The Convex Generalized Curve Shortening Flow 93
 4.1 Results from the Brunn-Minkowski Theory 94
 4.2 The AGCSF for σ in $(1/3, 1)$ 97
 4.3 The affine curve shortening flow 102
 4.4 Uniqueness of self-similar solutions 112

5 The Non-convex Curve Shortening Flow 121
 5.1 An isoperimetric ratio 121
 5.2 Limits of the rescaled flow 129
5.3 Classification of singularities

6 A Class of Non-convex Anisotropic Flows
6.1 The decrease in total absolute curvature
6.2 The existence of a limit curve
6.3 Shrinking to a point
6.4 A whisker lemma
6.5 The convexity theorem

7 Embedded Closed Geodesics on Surfaces
7.1 Basic results
7.2 The limit curve
7.3 Shrinking to a point
7.4 Convergence to a geodesic

8 The Non-convex Generalized Curve Shortening Flow
8.1 Short time existence
8.2 The number of convex arcs
8.3 The limit curve
8.4 Removal of interior singularities
8.5 The almost convexity theorem

Bibliography

Index