Physics and Modelling of Wind Erosion

by

Yaping Shao

School of Mathematics,
The University of New South Wales,
Sydney, Australia
Contents

Preface xi
Acknowledgments xiii

1. WIND EROSION AND WIND-EROSION RESEARCH 1
1. Wind-erosion Phenomenon 1
2. Integrated Wind-erosion Modelling 8

2. PATTERNS OF WIND EROSION IN THE WORLD 13
1. Climatic Background for Wind Erosion 14
2. Atmospheric Systems which Generate Dust Storms 18
2.1 Cold Fronts 19
2.2 Squall Lines 21
3. Global Wind-erosion Patterns 24
4. Major Wind-erosion Regions 29
4.1 Wind Erosion in the Sahara 29
4.2 Wind Erosion in the Middle East and Central Asia 32
4.3 Wind Erosion in China 35
4.4 Wind Erosion in the United States 37
4.5 Wind Erosion in Australia 37

3. ATMOSPHERIC BOUNDARY-LAYER AND ATMOSPHERIC MODELLING 41
1. Atmospheric Boundary Layer 41
1.1 Basic Features of Different Atmospheric Boundary Layers 42
 Convective Boundary Layers 42
 Stable Layer 43
2. Governing Equations for Atmospheric Boundary-Layer Flows 46
3. Reynolds Averaging and Turbulent Flux 51
4. Equation System for Mean Flows 54
5. Friction Velocity 55
6. Equations for Turbulent Fluxes and Variances

6.1 Turbulent Dust Flux

6.2 Dust Concentration Variance

6.3 Turbulent Kinetic Energy

6.4 Stability Measures

7. Similarity Theories

7.1 Monin-Obukhov Similarity Theory

7.2 Mixed-Layer Similarity Theory

8. Simulation of Atmospheric Boundary-Layer Flows

9. Atmospheric Prediction Models

4. LAND-SURFACE MODELLING

1. General Aspects of Land-Surface Schemes

2. Surface Energy Balance

3. Soil Moisture and Soil Temperature

4. Calculation of Surface Fluxes

5. Land-Surface Parameters

6. Examples of Land-Surface Simulation

7. Treatment of Heterogeneous Surfaces

Averaging Surface Properties

PDF Representation

Explicit Subgrid and Mosaic Methods

Spatial Variation of Atmospheric Data

5. BASIC CONCEPTS OF WIND EROSION

1. Soil-Particle Characteristics

2. Aerodynamic Forces on an Airborne Particle

3. Particle Terminal Velocity

4. Modes of Particle Motion

Suspension

Saltation

Creep

5. Threshold Friction Velocity for Sand Particles

The Bagnold Scheme

The Greeley-Iversen Scheme

Modified Greeley-Iversen Scheme

6. Threshold Friction Velocity for Dust Particles

The Relative Importance of Forces

Van der Waals Forces

Electrostatic Forces

Capillary Forces

Other Forces

6.2 The Threshold Friction Velocity as a Stochastic Variable

6. THE DYNAMICS AND MODELLING OF SALTATION

1. Uniform Saltation
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Non-Uniform Saltation</td>
<td>149</td>
</tr>
<tr>
<td>3.</td>
<td>Streamwise Saltation Flux</td>
<td>151</td>
</tr>
<tr>
<td>4.</td>
<td>The Bagnold Saltation Model</td>
<td>151</td>
</tr>
<tr>
<td>5.</td>
<td>The Owen Saltation Model</td>
<td>153</td>
</tr>
<tr>
<td>6.</td>
<td>The Raupach Model for Saltation Roughness Length</td>
<td>158</td>
</tr>
<tr>
<td>7.</td>
<td>Other Sand-Transport Equations</td>
<td>164</td>
</tr>
<tr>
<td>8.</td>
<td>Evolution of Streamwise Sand Transport with Distance</td>
<td>167</td>
</tr>
<tr>
<td>9.</td>
<td>Splash Entrainment</td>
<td>169</td>
</tr>
<tr>
<td>9.1</td>
<td>Wind-tunnel Observations of Splash Entrainment</td>
<td>170</td>
</tr>
<tr>
<td>9.2</td>
<td>Numerical Simulations of Splash Entrainment</td>
<td>172</td>
</tr>
<tr>
<td>10.</td>
<td>Numerical Modelling of Saltation</td>
<td>179</td>
</tr>
<tr>
<td>10.1</td>
<td>A Simple Flow Model</td>
<td>179</td>
</tr>
<tr>
<td>10.2</td>
<td>Large-Eddy Simulation Model</td>
<td>180</td>
</tr>
<tr>
<td>10.3</td>
<td>The Particle Motion</td>
<td>182</td>
</tr>
<tr>
<td>10.4</td>
<td>Aerodynamic Entrainment</td>
<td>183</td>
</tr>
<tr>
<td>10.5</td>
<td>Splash Entrainment</td>
<td>185</td>
</tr>
<tr>
<td>11.</td>
<td>Understanding of Saltation from Numerical Simulation</td>
<td>188</td>
</tr>
<tr>
<td>11.1</td>
<td>Importance of Splash Entrainment</td>
<td>188</td>
</tr>
<tr>
<td>11.2</td>
<td>Particle-momentum Flux, Saltation Flux and Roughness Length</td>
<td>192</td>
</tr>
</tbody>
</table>

7. **DUST EMISSION**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vertical Dust Flux and Friction Velocity</td>
<td>196</td>
</tr>
<tr>
<td>2.</td>
<td>The Mechanism for Dust Emission</td>
<td>199</td>
</tr>
<tr>
<td>3.</td>
<td>The Energy-based Dust-emission Model</td>
<td>202</td>
</tr>
<tr>
<td>4.</td>
<td>The Volume-Removal Based Dust-emission Model</td>
<td>208</td>
</tr>
<tr>
<td>4.1</td>
<td>The Equations of Motion for Ploughing Particles and Volume Removal</td>
<td>212</td>
</tr>
<tr>
<td>4.2</td>
<td>The Vertical Dust Flux</td>
<td>214</td>
</tr>
<tr>
<td>4.3</td>
<td>Soil-drag Force and Uncertainties</td>
<td>220</td>
</tr>
<tr>
<td>5.</td>
<td>Comparison of Dust-emission Models</td>
<td>222</td>
</tr>
<tr>
<td>6.</td>
<td>Concluding Remarks</td>
<td>222</td>
</tr>
</tbody>
</table>

8. **DUST TRANSPORT AND DEPOSITION**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The Evidence of Dust Transport and Deposition</td>
<td>225</td>
</tr>
<tr>
<td>2.</td>
<td>The Lagrangian Dust-transport Model</td>
<td>229</td>
</tr>
<tr>
<td>3.</td>
<td>The Eulerian Dust-transport Model</td>
<td>234</td>
</tr>
<tr>
<td>4.</td>
<td>The Vertical Diffusion of Dust Particles</td>
<td>240</td>
</tr>
<tr>
<td>4.1</td>
<td>Particle Eddy Diffusivity</td>
<td>241</td>
</tr>
<tr>
<td>4.2</td>
<td>Convective Transport</td>
<td>254</td>
</tr>
<tr>
<td>5.</td>
<td>Dry Deposition</td>
<td>257</td>
</tr>
<tr>
<td>5.1</td>
<td>The Two-layer Dry-deposition Model</td>
<td>258</td>
</tr>
<tr>
<td>5.2</td>
<td>Deposition Over Vegetation Canopies</td>
<td>263</td>
</tr>
<tr>
<td>5.3</td>
<td>The Single-layer Dry-deposition Model</td>
<td>268</td>
</tr>
<tr>
<td>6.</td>
<td>Wet Deposition</td>
<td>271</td>
</tr>
</tbody>
</table>
9. INTEGRATED WIND-EROSION MODELLING 279
 1. Introduction 279
 2. Sand Drift and Dust Emission of Soils with Multiple Particle Sizes 281
 3. Threshold Friction Velocity for Natural Surfaces 284
 3.1 Drag Partitioning: Approach I 285
 Ground Stress 287
 Stress on the Roughness Elements 288
 Total Stress 289
 Stress Partition 289
 3.2 Drag Partitioning: Approach II 291
 3.3 Double-Drag Partitioning 293
 3.4 Soil Moisture 294
 3.5 Chemical Binding and Crust 299
 4. System Structure and Land-surface Parameters 300
 4.1 Soil Particle-size Distribution 302
 4.2 Soil-Binding Strength 307
 4.3 Frontal-area Index and Roughness Length 309
 Frontal-area Index and Roughness Length of Sparse Vegetation 309
 Frontal-Area Index and Roughness Length of Soil Aggregates 311
 4.4 Soil Moisture 311
 5. Manipulation of GIS Data 311
 6. Examples of Integrated Wind-erosion Modelling 315
 6.1 Wind-erosion Time Series 315
 6.2 Wind-erosion Prediction On Broad Scales 316

10. SAND DUNES, DYNAMICS AND MODELLING 325
 1. Classification of Sand Dunes 326
 2. Basic Features of Flow Over a Sand Dune 333
 3. Sand Transport 337
 4. Computational Simulation 341
 4.1 Flow-model Implementation: A Non-hydrostatic Model 343
 4.2 Flow-model Implementation: A Large-eddy Simulation Model 345
 4.3 Computation of Erosion and Deposition Rates 348

11. TECHNIQUES FOR WIND-EROSION MEASUREMENTS 351
 1. Wind-tunnel Measurements 351
 2. Samplers 353
 2.1 Passive Samplers 354
 2.2 Active Samplers 357
 2.3 Fast-responding Samplers 357