2 Geometric Wave Equations
Contents

Preface xi

Chapter 1. The Wave Equation 1
 1.1. Basic Notations and Concepts from Geometry 1
 1.2. Semilinear Problems 3
 1.3. Wave Maps 3

Chapter 2. Conservation Laws 7
 2.1. Variational Formulation 7
 2.2. Noether's Theorem 10
 2.3. Method of Multipliers 13
 2.4. Geometric Invariance 15

Chapter 3. Function Spaces 19
 3.1. Lebesgue and Sobolev Spaces 19
 3.2. Besov Spaces 26
 3.3. Interpolation Theory 28
 3.4. \mathcal{H}^1 and BMO 31

Chapter 4. The Linear Wave Equation 37
 4.1. Representation Formulas and Duhamel's Principle 37
 4.2. Fourier Transform Representation 44
 4.3. Pointwise Estimates 45
 4.4. Strichartz-Type Estimates 48

Chapter 5. Well-Posedness 55
 5.1. Well-Posedness and Local Existence 55
 5.2. Dimensional Analysis and Critical Equations 58
 5.3. Effects of Lorentz Transformation 59

Chapter 6. Semilinear Wave Equations 63
 6.1. Lipschitz Nonlinearities 63
 6.2. Segal's Theorem 65
 6.3. Jörgens' Theorem 69
 6.4. Critical Growth 72

Chapter 7. Wave Maps 81
 7.1. Basic Questions 81
 7.2. Geometric Structure 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3. Analytic Structure</td>
<td>89</td>
</tr>
<tr>
<td>7.4. Algebraic Structure</td>
<td>91</td>
</tr>
<tr>
<td>7.5. Singularities and Nonuniqueness</td>
<td>102</td>
</tr>
<tr>
<td>Chapter 8. Wave Maps with Symmetry</td>
<td>109</td>
</tr>
<tr>
<td>8.1. Equivariant Maps</td>
<td>109</td>
</tr>
<tr>
<td>8.2. The Radial Wave Equation on \mathbb{R}^{2+1}</td>
<td>118</td>
</tr>
<tr>
<td>8.3. Regularity of Radial Wave Maps in $2 + 1$ Dimensions</td>
<td>123</td>
</tr>
<tr>
<td>Notes</td>
<td>129</td>
</tr>
<tr>
<td>Bibliography</td>
<td>135</td>
</tr>
</tbody>
</table>