C*-ALGEBRAS AND
NUMERICAL ANALYSIS

Roland Hagen
Freies Gymnasium Penig
Penig, Germany

Steffen Roch
Technical University of Darmstadt
Darmstadt, Germany

Bernd Silbermann
Technical University of Chemnitz
Chemnitz, Germany
Contents

Preface

0 Introduction
 0.1 Numerical analysis .. 11
 0.2 Operator chemistry .. 14
 0.3 The algebraic language of numerical analysis 15
 0.4 Microscoping .. 18
 0.5 A few remarks on economy 21
 0.6 Brief description of the contents 22

1 The algebraic language of numerical analysis 25
 1.1 Approximation methods 25
 1.1.1 Basic definitions 26
 1.1.2 Projection methods 28
 1.1.3 Finite section method 31
 1.2 Banach algebras and stability 34
 1.2.1 Algebras, ideals and homomorphisms 35
 1.2.2 Algebraization of stability 36
 1.2.3 Small perturbations 39
 1.2.4 Compact perturbations 39
 1.3 Finite sections of Toeplitz operators with continuous generating function 45
 1.3.1 Laurent, Toeplitz and Hankel operators 45
 1.3.2 Invertibility and Fredholmness of Toeplitz operators 48
 1.3.3 The finite section method 49
 1.4 C^*-algebras of approximation sequences 52
 1.4.1 C^*-algebras, their ideals and homomorphisms 53
 1.4.2 The Toeplitz C^*-algebra and the C^*-algebra of the finite section method for Toeplitz operators 56
CONTENTS

1.4.3 Stability of sequences in the C^*-algebra of the finite section method for Toeplitz operators 60
1.4.4 Symbol of the finite section method for Toeplitz operators ... 61
1.5 Asymptotic behaviour of condition numbers 62
 1.5.1 The condition of an operator 63
 1.5.2 Convergence of norms 64
 1.5.3 Condition numbers of finite sections of Toeplitz operators ... 65
1.6 Fractality of approximation methods 66
 1.6.1 Fractal homomorphisms, fractal algebras, fractal sequences .. 67
 1.6.2 Fractal algebras, and convergence of norms 71
Notes and references .. 73

2 Regularization of approximation methods 75
 2.1 Stably regularizable sequences 76
 2.1.1 Moore-Penrose inverses and regularizations of matrices .. 76
 2.1.2 Moore-Penrose inverses and regularization of operators .. 80
 2.1.3 Stably regularizable approximation sequences 85
 2.2 Algebraic characterization of stably regularizable sequences .. 89
 2.2.1 Moore-Penrose invertibility in C^*-algebras 89
 2.2.2 Stable regularizability, and Moore-Penrose invertibility in \mathcal{F}/\mathcal{G} 92
 2.2.3 Finite sections of Toeplitz operators and their stable regularizability 97
 2.2.4 Convergence of generalized condition numbers 100
 2.2.5 Difficulties with Moore-Penrose stability 103
Notes and references .. 104

3 Approximation of spectra 105
 3.1 Set sequences .. 105
 3.1.1 Limiting sets of set functions 106
 3.1.2 Coincidence of the partial and uniform limiting set 108
 3.2 Spectra and their limiting sets 110
 3.2.1 Limiting sets of spectra of norm convergent sequences ... 112
 3.2.2 Limiting sets of spectra: the general case 114
 3.2.3 The case of fractal sequences 117
 3.2.4 Limiting sets of singular values 119
CONTENTS

3.3 Pseudospectra and their limiting sets .. 119
 3.3.1 ε-invertibility .. 119
 3.3.2 Limiting sets of pseudospectra 125
 3.3.3 The case of fractal sequences 127
 3.3.4 Pseudospectra of operator polynomials 128

3.4 Numerical ranges and their limiting sets 134
 3.4.1 Spatial and algebraic numerical ranges 134
 3.4.2 Limiting sets of numerical ranges 136
 3.4.3 The case of fractal sequences 140

Notes and references .. 143

4 Stability analysis for concrete approximation methods 145
 4.1 Local principles .. 146
 4.1.1 Commutative C*-algebras 146
 4.1.2 The local principle by Allan and Douglas 149
 4.1.3 Fredholmness of Toeplitz operators with piecewise continuous generating function .. 151
 4.2 Finite sections of Toeplitz operators generated by a piecewise continuous function .. 158
 4.2.1 The lifting theorem .. 158
 4.2.2 Application of the local principle 163
 4.2.3 Galerkin methods with spline ansatz for singular integral equations .. 167
 4.3 Finite sections of Toeplitz operators generated by a quasicontinuous function .. 169
 4.3.1 Quasicontinuous functions 169
 4.3.2 Stability of the finite section method 173
 4.3.3 Some other classes of oscillating functions 175
 4.4 Polynomial collocation methods for singular integral operators with piecewise continuous coefficients 177
 4.4.1 Singular integral operators 178
 4.4.2 Stability of the polynomial collocation method 183
 4.4.3 Collocation versus Galerkin methods 187
 4.5 Paired circulants and spline approximation methods 188
 4.5.1 Circulants and paired circulants 190
 4.5.2 The stability theorem ... 191
 4.6 Finite sections of band-dominated operators 197
 4.6.1 Multidimensional band dominated operators 197
 4.6.2 Fredholmness of band dominated operators 198
 4.6.3 Finite sections of band dominated operators 200

Notes and references .. 204
5 Representation theory

5.1 Representations

5.1.1 The spectrum of a C*-algebra

5.1.2 Primitive ideals

5.1.3 The spectrum of an ideal and of a quotient

5.1.4 Representations of some concrete algebras

5.2 Postliminal algebras

5.2.1 Liminal and postliminal algebras

5.2.2 Dual algebras

5.2.3 Finite sections of Wiener-Hopf operators with almost periodic generating function

5.3 Lifting theorems and representation theory

5.3.1 Lifting one ideal

5.3.2 The lifting theorem

5.3.3 Sufficient families of homomorphisms

5.3.4 Structure of fractal lifting homomorphisms

Notes and references

6 Fredholm sequences

6.1 Fredholm sequences in standard algebras

6.1.1 The standard model

6.1.2 Fredholm sequences

6.1.3 Fredholm sequences and stable regularizability

6.1.4 Fredholm sequences and Moore-Penrose stability

6.2 Fredholm sequences and the asymptotic behavior of singular values

6.2.1 The main result

6.2.2 A distinguished element and its range dimension

6.2.3 Upper estimate of $\dim \text{Im} \Pi_n$

6.2.4 Lower estimate of $\dim \text{Im} \Pi_n$

6.2.5 Some examples

6.3 A general Fredholm theory

6.3.1 Centrally compact and Fredholm sequences

6.3.2 Fredholmness modulo compact elements

6.3.3 Fredholm sequences in standard algebras

6.4 Weakly Fredholm sequences

6.4.1 Sequences with finite splitting property

6.4.2 Properties of weakly Fredholm sequences

6.4.3 Strong limits of weakly Fredholm sequences

6.4.4 Weakly Fredholm sequences of matrices

6.5 Some applications

6.5.1 Numerical determination of the kernel dimension
CONTENTS

6.5.2 Around the finite section method for Toeplitz operators .. 315
6.5.3 Discretization of shift operators ... 317
Notes and references ... 322

7 Self-adjoint approximation sequences ... 323
 7.1 The spectrum of a self-adjoint approximation sequence 323
 7.1.1 Essential and transient points .. 323
 7.1.2 Fractality of self-adjoint sequences .. 327
 7.1.3 Arveson dichotomy: band operators .. 333
 7.1.4 Arveson dichotomy: standard algebras 338
 7.2 Szegö-type theorems ... 339
 7.2.1 Følner and Szegö algebras .. 340
 7.2.2 Szegö's theorem revisited .. 346
 7.2.3 A further generalization of Szegö's theorem 348
 7.2.4 Algebras with unique tracial state .. 352
Notes and references ... 354

Bibliography ... 357

Index ... 373