Lawrence Perko

Differential Equations and Dynamical Systems

Third Edition

With 241 Illustrations

Springer
Contents

Series Preface vii
Preface to the Third Edition ix

1 Linear Systems 1

1.1 Uncoupled Linear Systems 1
1.2 Diagonalization 6
1.3 Exponentials of Operators 10
1.4 The Fundamental Theorem for Linear Systems 16
1.5 Linear Systems in \mathbb{R}^2 20
1.6 Complex Eigenvalues 28
1.7 Multiple Eigenvalues 32
1.8 Jordan Forms 39
1.9 Stability Theory 51
1.10 Nonhomogeneous Linear Systems 60

2 Nonlinear Systems: Local Theory 65

2.1 Some Preliminary Concepts and Definitions 65
2.2 The Fundamental Existence-Uniqueness Theorem 70
2.3 Dependence on Initial Conditions and Parameters 79
2.4 The Maximal Interval of Existence 87
2.5 The Flow Defined by a Differential Equation 95
2.6 Linearization 101
2.7 The Stable Manifold Theorem 105
2.8 The Hartman–Grobman Theorem 119
2.9 Stability and Liapunov Functions 129
2.10 Saddles, Nodes, Foci and Centers 136
2.11 Nonhyperbolic Critical Points in \mathbb{R}^2 147
2.12 Center Manifold Theory 154
2.13 Normal Form Theory 163
2.14 Gradient and Hamiltonian Systems 171