Hydrology and Water Resources Engineering

SUB Göttingen
214 868 613

K.C. Patra

Narosa Publishing House
New Delhi Chennai Mumbai Calcutta
CONTENTS

Preface vii

1. Introduction 1
 1.1 General 1
 1.2 History of Hydrology 1
 1.3 Meteorology 3
 Lapse Rate 4
 Pressure 5
 Water Vapour 5
 Precipitable Water 7
 Latent Heat 9
 Humidity 10
 1.4 Cloud and Raindrop Formation 10
 1.5 Hydrologic Cycle 11
 1.6 Availability of Water on Earth 14
 1.7 Importance of Hydrology and its Applications in Engineering 16
 Problems 17

2. Statistics and Probabilities in Hydrology 19
 2.1 Introduction 19
 2.2 Statistical Parameters 20
 Central Tendency Parameters 20
 Dispersion Characteristics 25
 Skewness 26
 Kurtosis 27
 2.3 Theoretical Probability Distribution 30
 Discrete Distribution 31
 Continuous Distribution 33
 2.4 Frequency Analysis 38
 Gumbel's Distribution 40
 Pearson Type III Distribution 41
 Log Pearson Type III Distribution 41
 Normal Distribution 42
 Log Normal Distribution 43
 2.5 Graphical Method Using Probability Paper 50
 Construction of Probability Paper 51
 Selection of Type of Distribution 51
 2.6 Confidence Limits 52
 2.7 Regression and Correlation 56
 Graphical Method 56
 Analytical Method 56
 Correlation 58
 Significance of Parameters 60
 Standard Forms of Bivariate Equations 61
2.8 Multivariate Linear Regression and Correlation 64
 Multiple Correlation Coefficient 65
2.9 Analysis of Time Series 68
 Trend Analysis 70
 Oscillation 73
 Jump 74
 Periodicity or Seasonality 74
 Serial Correlation 76
 Stochastic Component 78
2.10 Dependence Models 78
 Thomas-Fiering Model 79
2.11 Chi-square Test of Goodness of Fit 82
 Problems 90

3. Precipitation 94
3.1 Introduction 94
3.2 Forms of Precipitation 95
3.3 Types of Precipitation 96
3.4 Rainfall in India 99
3.5 Measurement of Rainfall 101
 Non-Recording Rain Gauge 102
 Recording Type Rain Gauges 103
 Weather Radar 106
 Totalisers 107
3.6 Network Design 107
 Optimum Number of Rain Gauge Stations 108
 Ideal Location for a Rain Gauge Station 109
3.7 Consistency of Rainfall Data 111
3.8 Estimating Missing Data 114
 Arithmetic Mean Method 114
 Normal Ratio Method 114
 Regression Method 115
 Inverse Distance Method 115
3.9 Presentation of Precipitation Data 118
 Moving Average Curve 119
 Mass Curve 119
 Rainfall Hyetograph 119
 Intensity-Duration-Frequency Curves 121
3.10 Mean Aerial Rainfall 122
 Arithmetic Mean Method 123
 Thiessen Polygon Method 123
 Isohyetal Method 125
 Grid Point Method 126
 Orographic Method 127
 Isopercental Method 127
3.11 Depth-Area-Duration Curve 129
3.12 Design Storm 131
 Statistical Storm 132
 Probable Maximum Precipitation 140
 Standard Project Storm 145

Problems 146
4. Losses from Precipitation

4.1 Introduction 149
4.2 Evaporation and its Estimation 149
 Measurement Using Evaporation Pans 151
 Empirical Equations 154
 Water Balance Method 156
 Energy Budget Method 157
 Mass Transfer Method 161
4.3 Methods to Reduce Reservoir Evaporation 161
4.4 Evapotranspiration (Consumptive Use) and its Estimation 163
 Experimental Measurement 164
 Climatic Approaches 165
4.5 Interception 176
4.6 Depression Storage 178
4.7 Infiltration and its Estimation 178
 Factors Affecting Infiltration 179
 Field Measurement Using Infilometers 182
 Rainfall-Runoff Analysis 184
 Infiltration Indices 185
 Mass Curve Method 190
 Analytical Models 191
4.8 Watershed Leakage 191
 Problems 192

5. Ground Water

5.1 Introduction 195
5.2 Zoning of Subsurface 195
 Aeration Zone 195
 Saturated Zone 197
5.3 Water Bearing Materials 197
5.4 Aquifer Properties Affecting Ground Water 199
 Aquifer Material Properties 200
 Ground Water Flow Parameters 202
 Stratification of Layers 207
 Calculation of Flow from Flownet 209
5.5 Steady Flow Equation 211
5.6 Unsteady Flow Equation 214
5.7 Ground Water Flow Problems 215
 Steady Flow in Unconfined Aquifer 215
 Steady Flow in Confined Aquifer of Constant Thickness 217
 Steady Flow in a Confined Aquifer of Variable Thickness 219
 Unconfined Flow with Recharge from Rainfall 220
 Drainage Using Tiles 222
 Flow Through Leaky Aquifer 224
 Flow into Infiltration Galleries 226
5.8 Well Hydraulics 227
 Steady Radial Flow into a Well 228
 Partially Penetrated Well 233
5.9 Unsteady Flow into a Well 235
 Confined Aquifer 235
 Unsteady Radial Flow into a Well in Unconfined Aquifer 242
5.10 Spacing of Wells 243
5.11 Well Loss 245
5.12 Well Adjacent to a Stream (Method of Images) 246
5.13 Sea Water Intrusion 248
5.14 Methods of Ground Water Investigation 250

Hydro-Geologic Investigation 250
At Surface 252
Sub-Surface Geophysical Methods 253
Model Study 255
Hydrologic Investigation 255
Problems 256

6. Stream Flow 258
6.1 Introduction 258
6.2 Terms Used 258
6.3 Factors Affecting Runoff 261
6.4 Stage Measurement 266
Non-Recording Stage Recorders 266
Automatic Gauge Recorders 268
6.5 Discharge Measurement 270
Discharge Measuring Structures 270
Approximate Area-Slope Method 270
Slope Method 273
Area Velocity Method 276
Radio Tracer Method 286
Dilution Technique 286
Electromagnetic Induction Method 287
6.6 Stage Discharge Relationship 287
Extension of Stage Discharge Relation 290
6.7 Requirement of a Good Gauge-Discharge Site 295
Network Design 296
6.8 Runoff Computation 297
Extension of Runoff Records 297
6.9 Runoff From Rainfall Records 305
Use of Rainfall-Runoff Data at a Site 305
Use of Rainfall-Runoff Relation of Neighbouring Sites 308
Empirical Relations 310
6.10 Runoff Simulation Models 315
Steps in Modelling 316
HEC Model 317
Problems 321

7. Hydrograph 324
7.1 Introduction 324
7.2 Hydrograph Concept 325
7.3 Components of Hydrograph 326
7.4 Unit Hydrograph 334
Assumptions and Conditions in Unit Hydrograph 335
Limitations of Unit Hydrograph 336
Uses of Unit Hydrograph 336
7.5 Derivation of Unit Hydrograph 337
From Simple Storm Hydrograph 337
From Complex Storms 341
7.6 S-Hydrograph 346
7.7 Change of Unit Duration of Unit Hydrograph 349
 Required Duration is an Integer Multiple of D-hour 349
 Required Duration is a Real Multiple of D-hour 350
7.8 Instantaneous Unit Hydrograph (IUH) 350
 Derivation of UH from IUH 352
7.9 Derivation of Instantaneous Unit Hydrograph 353
 From S-hydrograph 353
 From Conceptual Models 353
7.10 Synthetic Unit Hydrograph 379
 Snyder’s Approach 379
 Synthetic Unit Hydrograph for Indian Catchment 381
 Goel et al. Method 382
7.11 Dimensionless Unit Hydrograph 384
7.12 Distribution Graph 386
Problems 388

8. Design Flood 392
8.1 Introduction 392
8.2 Design Flood 392
8.3 Flood Peak Estimations for Ungauged Catchments 395
 Rational Method 395
 Empirical Equations 399
 Envelope Curves 408
8.4 Flood Estimation for Gauged Catchment 410
 Flood Frequency Analysis 411
 Unit Hydrograph Approach 420
8.5 Regional Flood Frequency Analysis 427
8.6 Analysis of Partial Duration Series 430
 Problèmes 432

9. Flood Routing 434
9.1 Introduction 434
9.2 Routing Methods 435
9.3 Hydrologic Channel Routing 437
 Muskingum Equation 439
 Working Value Method 447
9.4 Hydraulic Channel Routing 449
 Finite Difference Method 450
 Numerical Methods in Routing 452
9.5 Hydrologic Reservoir Routing 453
 Analytical (Trial and Error) Method 454
 Modified Puls Method 455
 Inflow-Storage-Discharge Method 461
 Goodrich Method 466
9.6 Flood Routing Machines 469
 Mechanical Flood Routers 469
 Electric Analog Routing Machine 469
 Digital Computers 470
9.7 Flood Forecasting 470
9.8 Flood Control Measures 482
 Problems 485
10. Reservoir and Sedimentation 488

10.1 Introduction 488
10.2 Fixation of Reservoir Capacity 488
 Ripples Mass Curve 489
 Sequent Peak Algorithm 490
10.3 Determination of Spillway Size 494
10.4 Allocation of Storage Space for Various Uses 496
 Reservoir Elevation-Area-Capacity Curve 497
 Reservoir Operation 497
 Reservoir Working Table 498
10.5 Reservoir Sedimentation 501
10.6 Determination of Sediment Yield at a River Site 502
 Sheet Erosion 502
 Sediment Measurement by Sample Recorder 504
 Bed Load Estimation 507
 Empirical Relations for Total Sediment Load 509
10.7 Reservoir Sedimentation 513
 Reservoir Classification 514
 Distribution of Sediment in Reservoirs 515
10.8 Reservoir Sediment Control 521
10.9 Reservoir Economics 524
 Cost-Benefit Ratio 524
 Optimisation of Benefits 528
 Linear Programming in Multipurpose Water Resource Projects 530

Problems 532

Objective Questions 534
References 547
Conversion Factors 549
Index 553