Contents

Preface xi

Part 1. Riemannian Geometry 1

Chapter 1. Differentiable Manifolds and Vector Bundles 3
 1.1. Differentiable Manifolds 3
 1.2. Tangent Spaces and Vector Fields 5
 1.3. Vector Bundles 8
 1.4. Tangent Bundles and Tensor Fields 11
 1.5. The Topology of Smooth Manifolds 14
 1.6. Lie Groups and Lie Algebras 16
 Appendix: Topology, Homotopy and Covering Spaces 20
 Exercises 23

Chapter 2. Metric, Connection, and Curvature 29
 2.1. Metric, Connection, and Curvature 29
 2.2. Linear Connections and Geodesics 31
 2.3. Riemannian Metrics and Riemannian Connections 34
 2.4. Sectional, Ricci and Scalar Curvatures 37
 2.5. Cartan's Structure Equations and Examples 40
 Exercises 45

Chapter 3. The Geometry of Complete Riemannian Manifolds 49
 3.1. Riemannian Distance 49
 3.2. Completeness and Hopf-Rinow Theorem 53
 3.3. Jacobi Fields and Conjugate Points 56
 3.4. Cartan-Ambrose-Hicks Theorem and Space Forms 64
 3.5. Homogeneous and Symmetric Spaces 66
 3.6. Hodge Theorem and Comparison Theorems 70
 Exercises 74

Part 2. Complex Manifolds 81

Chapter 4. Complex manifolds and Analytic Varieties 83
 4.1. Holomorphic Functions of One or More Complex Variables 83
 4.2. Definition and Examples of Complex Manifolds 86
 4.3. The Almost Complex Structure 89
 4.4. More Examples 92
 4.5. Hypersurfaces and Analytic Subvarieties 95
 4.6. Divisors and Analytic Cycles 99
Exercises

Chapter 5. Holomorphic Vector Bundles, Sheaves and Cohomology

5.1. Holomorphic Vector Bundles
5.2. Sheaves
5.3. Sheaf Cohomology Groups
5.4. Holomorphic Line Bundles
5.5. Chern Classes

Exercises

Chapter 6. Compact Complex Surfaces

6.1. The Topological Invariants
6.2. The Kodaira Dimension and the Algebraic Dimension
6.3. Examples of Surfaces
6.4. Enriques-Kodaira Classification Theory for Surfaces

Exercises

Part 3. Kähler Geometry

Chapter 7. Hermitian and Kähler Metrics

7.1. Connections on Vector Bundles and Their Curvature
7.2. Chern Forms of a Complex Vector Bundle
7.3. Hermitian Bundles
7.4. Hermitian and Kähler Metrics on Complex Manifolds
7.5. The Curvature of a Hermitian or Kähler Metric
7.6. Wu’s Theorem, Schwarz Lemma and Hartogs Phenomenon

Exercises

Chapter 8. Compact Kähler Manifolds

8.1. Hodge Theorem and Hodge Decomposition
8.2. The Hard Lefschetz Theorem
8.3. Kodaira Vanishing and Embedding Theorems
8.4. Ample Subvarieties and Ample Vector Bundles
8.5. Hermitian Symmetric Spaces and Kähler C-Spaces
8.6. The Hartshorne-Frankel Conjecture

Exercises

Chapter 9. Kähler Geometry

9.1. Calabi’s Conjecture and Kähler-Einstein Metrics
9.2. Corollaries of Yau’s Theorems
9.3. Invariant Metrics
9.4. Harmonic Maps and the Rigidity Theorems
9.5. Non-positively Curved Kähler Surfaces

Exercises

Bibliography

Index