Henk J.M. Bos

Redefining Geometrical Exactness

Descartes' Transformation of the Early Modern Concept of Construction

With 95 Illustrations

Springer
Contents

1 General introduction 3
 1.1 Construction and representation 3
 1.2 The interpretation of exactness 6
 1.3 Structure of the story 8
 1.4 Motivation of the study 11
 1.5 Historiographical scheme 13
 1.6 Strategies in the interpretation of exactness 15
 1.7 Methods of exposition 17
 1.8 Survey 20
 1.9 Conclusion 21

2 The legitimation of geometrical procedures before 1590 23
 2.1 Introduction 23
 2.2 The legitimacy of the Euclidean constructions 24
 2.3 The quadrature of the circle 25
 2.4 Two mean proportionals 27
 2.5 The status of the constructions 34
 2.6 Conclusion 36

3 1588: Pappus' "Collection" 37
 3.1 Introduction 37
 3.2 The classification of problems 37
 3.3 Terminology and context of the classification 48
 3.4 The precept 48
 3.5 The constructing curves 50
 3.6 Neusis constructions 53
 3.7 Conclusion 56

4 The early modern tradition of geometrical problem solving; survey and examples 59
 4.1 Introduction 59
 4.2 Standard problems, standard constructions 62
 4.3 Angular sections 70
 4.4 Mean proportionals 71
Contents

4.5 Area and content problems ... 79
4.6 Neusis problems .. 81
4.7 Reconstructing classical texts 83
4.8 Division of figures .. 84
4.9 Triangle problems .. 88
4.10 Varia ... 91
4.11 Heuristics and analysis .. 93

5 Early modern methods of analysis 95
5.1 Introduction .. 95
5.2 Classical analysis of plane problems 98
5.3 Algebraic analysis of plane problems 102
5.4 Ghetaldi: algebraic analysis limited 106
5.5 Classical analysis of solid problems 110
5.6 Algebraic analysis of solid problems 112
5.7 Conclusion .. 117

6 Arithmetic, geometry, algebra, and analysis 119
6.1 Introduction .. 119
6.2 Terminology .. 119
6.3 Arithmetic, geometry, algebra, analysis 128
6.4 Obstacles to the merging of arithmetic, geometry, algebra,
and analysis .. 130
6.5 Conclusion .. 132

7 Using numbers in geometry — Regiomontanus and Stevin 135
7.1 Introduction .. 135
7.2 Regiomontanus .. 136
7.3 Stevin .. 138
7.4 A later discussion .. 141
7.5 Conclusion .. 143

8 Using algebra — Viète’s analysis 145
8.1 Introduction .. 145
8.2 Viète’s “New Algebra” ... 145
8.3 The “New Algebra” as a formal system 148
8.4 The “New Algebra” and the operations of arithmetic
and geometry .. 152
8.5 The significance of Viète’s “New Algebra” 153
8.6 Another approach: Van Ceulen 154
8.7 Conclusion: numbers, algebra,
and geometrical construction .. 157
9 Clavius
9.1 Introduction ... 159
9.2 The treatise on the quadratrix 160
9.3 The geometrical status of the construction 162
9.4 Clavius' interpretation of geometrical exactness 165

10 Viète
10.1 A new postulate .. 167
10.2 A supplement to geometry 168
10.3 The construction of roots of third- and fourth-degree equations . 173
10.4 Further statements by Viète on constructions 176
10.5 Viète's interpretation of geometrical exactness 179

11 Kepler
11.1 Constructibility and creation 183
11.2 Kepler's demarcation of geometry 184
11.3 Constructibility and existence 185
11.4 Kepler's criticism of non-plane constructions 187
11.5 Kepler's objections to algebraic methods 189
11.6 Kepler's interpretation of geometrical exactness 193

12 Molther
12.1 The Delian Problem ... 195
12.2 Arguments .. 196
12.3 Molther's justification of the postulate 197
12.4 The "Mesolabum" ... 202
12.5 Molther's interpretation of geometrical exactness 203

13 Fermat
13.1 Geometrical problems and their analysis 205
13.2 Concluding remarks .. 209

14 Geometrical problem solving — the state of the art c. 1635 211
14.1 Introduction .. 211
14.2 Principal dynamics: algebraic analysis 214
14.3 Construction ... 216
14.4 Interpretation of exactness 219
14.5 Conclusion .. 221

15 Introduction to Part II
15.1 Descartes, construction, and exactness 225
15.2 Mathematical ideas and results 226
15.3 Philosophical and mathematical context 228
16 Construction and the interpretation of exactness in Descartes’ studies of c. 1619 231
16.1 The general art to solve all problems 231
16.2 The classification of problems 233
16.3 Problems about continuous magnitude 235
16.4 The “new compasses” 237
16.5 The geometrical status of curve tracing 245
16.6 Conclusion — Descartes’ vision of geometry c. 1619 251

17 Descartes’ general construction of solid problems c. 1625 255
17.1 The construction of roots of third- and fourth-degree equations 255
17.2 Descartes’ geometrical ideas c. 1625 259

18 Problem solving and construction in the “Rules for the direction of the mind” (c. 1628) 261
18.1 The Rules 261
18.2 The arithmetical operations 263
18.3 The algebraic operations 266
18.4 Comparison with Viète’s “new algebra” 268
18.5 Obstacles in the program of the Rules 268

19 Descartes’ first studies of Pappus’ problem (early 1632) 271
19.1 Golius’ challenge 271
19.2 Pappus’ problem 272
19.3 Descartes’ earliest solution of the five-line problem reconstructed 274
19.4 The “turning ruler and moving curve” procedure 278
19.5 The significance of Pappus’ problem 281

20 The Geometry, introduction and survey 285
20.1 Descartes’ geometrical ideas c. 1619–1637 — a recapitulation 285
20.2 The questions still open before 1637 287
20.3 The structure of the Geometry 289

21 Algebraic operations in geometry 293
21.1 Descartes’ interpretation 293
21.2 Comparison with earlier interpretations 297
21.3 The actual interpretation of the algebraic operations in the Geometry 300

22 The use of algebra in solving plane and indeterminate problems 303
22.1 Problem, equation, construction 303
22.2 An example 306
22.3 Indeterminate problems 310
23 Descartes' solution of Pappus' problem

23.1 The problem

23.2 The general solution: equations and constructions

23.3 The three- and four-line Pappus problem

23.4 Pappus' problem “in five lines”

23.5 The “simplest” five-line locus

23.6 Another five-line locus

23.7 Clarity and concealment

24 Curves and the demarcation of geometry in the *Geometry*

24.1 The demarcation

24.2 Curves traced by motion

24.3 Pointwise construction of curves

24.4 Curves traced by means of strings

24.5 The demarcation of geometry before 1637

24.6 The development of Descartes' ideas on demarcation between 1632 and 1637

25 Simplicity and the classification of curves

25.1 The classification

25.2 Simplicity, tracing, and degree

25.3 Simplest possible curves and equations

25.4 Reducibility

25.5 Conclusion

26 The canon of geometrical construction

26.1 The “construction of equations”

26.2 The standard construction of third- and fourth-degree equations

26.3 The standard construction for fifth- and sixth-degree equations

26.4 Constructing equations of higher degree

26.5 The canon of construction

26.6 Special Cases

27 The theory of equations in the *Geometry*

27.1 Character of the theory and key ideas

27.2 The transformations

27.3 Reducibility

27.4 Descartes' example: a problem from Pappus

27.5 Conclusion

28 Conclusion of Part II

28.1 Forces and obstacles

28.2 Descartes' transformation of the art of geometrical problem solving
28.3 The path to the *Geometry* ... 401
28.4 Descartes and the interpretation of exactness 407
28.5 Success and failure in the interpretation of exactness 410
28.6 What does exactness mean? ... 412

29 Epilogue 415
29.1 Pre-Cartesian geometrical problem solving 415
29.2 Early reactions to the *Geometry* 416
29.3 The construction of equations 422
29.4 The interpretation of exactness 423
29.5 Conclusion — metamorphoses 425

List of problems 429

Bibliography 433

Name Index 455

Subject Index 460