Chapter 3. Dirac Operators

3.1. Connections in spinor bundles
3.2. The Dirac and the Laplace operator in the spinor bundle
3.3. The Schrödinger-Lichnerowicz formula
3.4. Hermitian manifolds and spinors
3.5. The Dirac operator of a Riemannian symmetric space
3.6. References and Exercises

Chapter 4. Analytical Properties of Dirac Operators

4.1. The essential self-adjointness of the Dirac operator in L^2
4.2. The spectrum of Dirac operators over compact manifolds
4.3. Dirac operators are Fredholm operators
4.4. References and Exercises

Chapter 5. Eigenvalue Estimates for the Dirac Operator and Twistor Spinors

5.1. Lower estimates for the eigenvalues of the Dirac operator
5.2. Riemannian manifolds with Killing spinors
5.3. The twistor equation
5.4. Upper estimates for the eigenvalues of the Dirac operator
5.5. References and Exercises

Appendix A. Seiberg-Witten Invariants

A.1. On the topology of 4-dimensional manifolds
A.2. The Seiberg-Witten equation
A.3. The Seiberg-Witten invariant
A.4. Vanishing theorems
A.5. The case $\dim \mathcal{M}_L(g) = 0$
A.6. The Kähler case
A.7. References

Appendix B. Principal Bundles and Connections

B.1. Principal fibre bundles
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2</td>
<td>The classification of principal bundles</td>
<td>162</td>
</tr>
<tr>
<td>B.3</td>
<td>Connections in principal bundles</td>
<td>163</td>
</tr>
<tr>
<td>B.4</td>
<td>Absolute differential and curvature</td>
<td>166</td>
</tr>
<tr>
<td>B.5</td>
<td>Connections in $U(1)$-principal bundles and the Weyl theorem</td>
<td>169</td>
</tr>
<tr>
<td>B.6</td>
<td>Reductions of connections</td>
<td>173</td>
</tr>
<tr>
<td>B.7</td>
<td>Frobenius' theorem</td>
<td>174</td>
</tr>
<tr>
<td>B.8</td>
<td>The Freudenthal-Yamabe theorem</td>
<td>177</td>
</tr>
<tr>
<td>B.9</td>
<td>Holonomy theory</td>
<td>177</td>
</tr>
<tr>
<td>B.10</td>
<td>References</td>
<td>178</td>
</tr>
</tbody>
</table>

Bibliography

Index