Table of Contents

CHAPTER 1 INITIAL CONSIDERATIONS

1.1 Management Attitudes 1
1.2 Objectives 1
1.3 Industry Trends 2
1.4 Financial Issues 2
1.5 Target Horizons 5
1.6 Sequence of Events for Data Acquisition 5
1.7 Environment and Weather 8
1.8 Special Considerations of 3-D versus 2-D Data Acquisition 8
1.9 Definitions of 3-D Terms 8
Chapter 1 Quiz 12

CHAPTER 2 PLANNING AND DESIGN

2.1 Survey Design Decision Table 13
2.2 Orthogonal Geometry 14
2.3 Fold 14
2.4 In-line Fold 16
2.5 Cross-line Fold 17
2.6 Total Fold 18
2.7 Fold Taper 19
2.8 Signal-to-Noise Ratio (S/N) 20
2.9 Bin Size 20
2.9.1 Target Size 21
2.9.2 Maximum Unaliased Frequency 21
2.9.3 Lateral Resolution 24
2.9.3.1 Lateral Resolution after Migration 25
2.9.3.2 Separation of Diffractions 26
2.9.4 Vertical Resolution 27
Let's Design a 3-D—Part 1 28
2.10 x_{\min} 29
2.11 x_{\max} 32
2.11.1 Target Depth 34
2.11.2 Direct Wave Interference 34
2.11.3 Refracted Wave Interference (First Breaks) 35
2.11.4 Deep Horizon Critical Reflection Offset 35
2.11.5 Maximum NMO Stretch to Be Allowed 35
2.11.6 Required Offset to Measure Deepest LVL (refractor) 35
2.11.7 Required NMO Discrimination 35
2.11.8 Multiple Cancellation 35
2.11.9 Offsets Necessary for AVO 35
2.11.10 Dip Measurements 35
CHAPTER 3 PATCHES AND EDGE MANAGEMENT

3.1 Offset Distribution 39
3.2 Azimuth Distribution 40
3.3 Narrow versus Wide Azimuth Surveys 40
3.4 85% Rule 41
3.5 Fresnel Zone 46
3.6 Diffractions 47
3.7 Migration Apron 47
3.8 Edge Management 48
3.9 Ray-Trace Modeling 51
3.10 Record Length 51

Let's Design a 3-D—Part 3 53
Let's Design a 3-D—Summary 54

Chapter 3 Quiz 55

CHAPTER 4 FLOWCHARTS, EQUATIONS, AND SPREADSHEETS

4.1 3-D Design FlowChart 57
4.2 Basic 3-D Equations—Square Bins 57
4.3 Basic 3-D Equations—Rectangular Bins 59
4.4 Basic Steps in 3-D Layout—Five-Step Method 59
4.5 Graphical Approach 61
4.6 Standardized Spreadsheets 62
4.7 Estimating the Cost of a 3-D Survey 69
4.8 Cost Model 69

CHAPTER 5 FIELD LAYOUTS

5.1 Full-Fold 3-D 77
5.2 Sampling the 5-D Prestack Wavefield 77
5.3 Swath 81
5.4 Orthogonal 81
5.5 Brick 83
5.6 Nonorthogonal 83
5.7 Flexi-Bin® or Bin Fractionation 85
5.8 Button Patch 89
5.9 Zig-Zag 91
5.10 Mega-Bin 92
5.11 Hexagonal Binning 93
5.12 Star 96
5.13 Radial 96
5.14 Random 96
5.15 Circular Patch 99
5.16 Nominal Fold Comparison 99
Chapter 5 Quiz 105

CHAPTER 6 SOURCE EQUIPMENT
6.1 Explosive Sources 107
6.2 Dynamite Testing 113
6.3 Dynamite Shooting Strategy 113
6.4 Vibrators 113
6.5 Vibrator Array Concepts 114
6.6 Vibrator Testing 116
6.7 Vibrator Deployment Strategy 118
6.8 Other Sources 119
Chapter 6 Quiz 119

CHAPTER 7 RECORDING EQUIPMENT
7.1 Receivers 121
7.2 Recorders 123
7.3 Distributed Systems 124
7.4 Telemetry Systems 126
7.5 Remote Storage 127
Chapter 7 Quiz 127

CHAPTER 8 ARRAYS
8.1 The Question of Arrays 129
8.2 Geophone Arrays 129
8.3 Source Arrays 131
8.4 Combined Array Response 131
8.5 Stack Arrays 131
8.6 Hands-Off Acquisition Technique 134
8.7 Symmetric Sampling 134

CHAPTER 9 PRACTICAL FIELD CONSIDERATIONS
9.1 Surveying 135
9.2 Script Files 138
9.3 Templates 141
9.4 Roll-On/Off 141
Table of Contents

9.5 No Roll-On/Off 142
9.6 Swath Width 142
9.7 Shooting Strategy 143
 9.7.1 Vibrator 145
 9.7.2 Dynamite 146
9.8 Large Surveys 146
9.9 Field Visits (QC) 147
9.10 Offsets and Skids 148
9.11 General Considerations 148
 9.11.1 Imaging Area 148
 9.11.2 Cables 149
 9.11.3 Permitting 150
 9.11.4 Safety 150
9.12 Field Examples 151
9.13 Field QC (Data) 152
 9.13.1 Positional Data Quality 152
 9.13.2 Seismic Data Quality 152
 9.13.3 Verify Seismic/Positional Data Relationship 153

Chapter 9 Quiz 155

CHAPTER 10 PROCESSING

10.1 Processing 157
10.2 Processing Stream 157
10.3 Refraction Statics 158
10.4 Velocity Analysis 158
10.5 Reflection Statics 161
10.6 Dip Moveout 162
10.7 Stack 166
10.8 Acquisition Footprints 166
10.9 Migration and Random Sampling 167
10.10 Making Adjustments for Data Quality 168

Chapter 10 Quiz 169

CHAPTER 11 INTERPRETATION

11.1 Interpretation Systems 171
11.2 Mapping 171
11.3 Integration 172
11.4 Acquisition Footprints 173
11.5 Seismic Attributes 173
11.6 Geostatistics 173
11.7 Immersion Technology 173
CHAPTER 12 SPECIAL INTEREST TOPICS

12.1 Digital Orthomaps and GIS data 175
12.2 Transition Zones 175
12.3 Pread Stack Time and Depth Migration 176
12.4 Time-Lapse (4-D) Seismic 177
12.5 Converted Wave 3-D Design 177
12.6 3-D Inversions 180
12.7 Future Directions 181

ANSWERS TO QUIZ QUESTIONS 183

GLOSSARY 185

REFERENCES 195

INDEX 201