Translations of

MATHEMATICAL MONOGRAPHS

Volume 190

Dynamical Systems on Homogeneous Spaces

Alexander N. Starkov

American Mathematical Society
Providence, Rhode Island
Contents

Introduction ix
List of Notations xv

Preliminaries 1
 A. Ergodic theory 1
 B. Topological dynamics 6
 C. Lie groups and Lie algebras 10
 D. Linear algebraic groups 13
 E. Finite volume spaces 16
 F. Mahler’s criterion 20

Chapter 1. Ergodicity and Mixing of Homogeneous Flows 23
 §1. General constructions in the theory of homogeneous flows 25
 §2. The Mautner phenomenon and the ergodic decomposition 29
 §3. Nilpotent homogeneous flows 32
 §4. Toral automorphisms and examples of solvable flows 40
 §5. Construction of the semisimple splitting 49
 §6. Algebraic groups and homogeneous spaces of finite volume 54
 §7. Solvable homogeneous flows 60
 §8. Flows on semisimple homogeneous spaces 67
 §9. The Mautner phenomenon, ergodicity, and mixing in the general case 70
 §10. The ergodic decomposition 75
 §11. Spectral theory of homogeneous flows 81

Chapter 2. Dynamics of Unipotent Flows 93
 §12. Homecoming of unipotent trajectories 95
 §13. Horospherical flows on homogeneous spaces 99
 §14. The geodesic and horocycle flows on surfaces of constant negative curvature 102
 §15. Rigidity of the horocycle flow 111
 §16. Classification of ergodic measures of the horocycle flow 115
 §17. Classification of ergodic measures of unipotent flows 121
 §18. Rigidity, quotients, and joinings of unipotent flows 127
 §19. Uniform distribution of unipotent trajectories 131
 §20. Various problems of convergence in the space of measures 139
Chapter 3. Dynamics of Nonunipotent Flows 147
 §21. Structure of orbits, invariant sets, and ergodic measures of homogeneous flows 148
 §22. Multiple mixing 157
 §23. Partial rigidity of quasi-unipotent flows 162
 §24. Topological equivalence and time changes 165
 §25. Divergent and bounded trajectories 173
 §26. Ergodic measures and orbit closures for actions of arbitrary subgroups 179
 §27. Exponential mixing 183

Chapter 4. Applications to Number Theory 189
 §28. The Oppenheim–Davenport conjecture 190
 §29. Foundations of the theory of Diophantine approximation 199
 §30. Diophantine approximation from the ergodic viewpoint 209
 §31. Counting lattice points in \mathbb{R}^n 216

References 227

Index 239