Contents

Preface vii

1 Introduction 1

1.1 Logic and Optimization 1

1.1.1 Optimization and Constraint Satisfaction 2

1.1.2 Constraint Programming 4

1.1.3 Development of Logic-Based Methods 6

1.1.4 Recent Applications and Software 8

1.2 Organization of the Book 9

1.2.1 How Much to Read 9

1.2.2 Background Material 11

1.2.3 A Practical Logic-Based System 12

1.2.4 A Deeper Analysis 12

2 Some Examples 15

2.1 Logic-Based Modeling 16

2.1.1 The Traveling Salesman Problem 17

2.1.2 The Assignment Problem 18

2.1.3 The Quadratic Assignment Problem 19

2.1.4 A Job Shop Scheduling Problem 20
CONTENTS

2.2 A Knapsack Problem 23
 2.2.1 An Integer Programming Model 23
 2.2.2 An Integer Programming Solution 24
 2.2.3 A Logic-Based Solution 27

2.3 Processing Network Design 31
 2.3.1 An Integer Programming Approach 32
 2.3.2 A Logic-Based Approach 33

2.4 Lot Sizing 37
 2.4.1 An Integer Programming Model 38
 2.4.2 A Logic-Based Model 39

3 The Logic of Propositions 43
 3.1 The Idea of Propositional Logic 44
 3.1.1 Formulas 44
 3.1.2 Clauses 45
 3.1.3 Conversion to Clausal Form 47
 3.1.4 Horn Clauses 48
 3.1.5 Renamable Horn Clauses 50
 3.2 Resolution 53
 3.2.1 The Resolution Algorithm 53
 3.2.2 Projection 55
 3.2.3 Unit Resolution 57
 3.2.4 Constraint-Based Search 59

4 The Logic of Discrete Variables 61
 4.1 Formulas of Discrete-Variable Logic 62
 4.1.1 Formulas and Semantics 62
 4.1.2 Multivalent Clauses 62
 4.2 Multivalent Resolution 63
 4.2.1 Full Resolution 63
 4.2.2 Projection 65
 4.2.3 Unit Resolution 65
 4.2.4 Constraint Generation 66
 4.3 Defined Predicates 67

5 The Logic of 0-1 Inequalities 69
 5.1 Inequalities and Implication 70
 5.2 Resolution for 0-1 Inequalities 73
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.2</td>
<td>Minimum Bandwidth Orderings</td>
<td>179</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Finding a Minimum Bandwidth Ordering</td>
<td>180</td>
</tr>
<tr>
<td>11</td>
<td>Domain Reduction</td>
<td>185</td>
</tr>
<tr>
<td>11.1</td>
<td>Consistency</td>
<td>187</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Arc and Hyperarc Consistency</td>
<td>187</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Bounds Consistency</td>
<td>189</td>
</tr>
<tr>
<td>11.2</td>
<td>The Element and Sum Constraints</td>
<td>190</td>
</tr>
<tr>
<td>11.2.1</td>
<td>The Element Constraint</td>
<td>191</td>
</tr>
<tr>
<td>11.2.2</td>
<td>The Sum Constraint</td>
<td>193</td>
</tr>
<tr>
<td>11.3</td>
<td>The All-Different Constraint</td>
<td>196</td>
</tr>
<tr>
<td>11.3.1</td>
<td>A Combinatorial Algorithm</td>
<td>196</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Domain Reduction as a Matching Problem</td>
<td>199</td>
</tr>
<tr>
<td>11.4</td>
<td>Constraint Propagation</td>
<td>201</td>
</tr>
<tr>
<td>12</td>
<td>Constraint Programming</td>
<td>203</td>
</tr>
<tr>
<td>12.1</td>
<td>Development of Constraint Programming</td>
<td>204</td>
</tr>
<tr>
<td>12.2</td>
<td>Logic Programming</td>
<td>206</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Basic Idea</td>
<td>206</td>
</tr>
<tr>
<td>12.2.2</td>
<td>A Scheduling Problem</td>
<td>209</td>
</tr>
<tr>
<td>12.3</td>
<td>Constraint Logic Programming</td>
<td>211</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Unification as Constraint Solving</td>
<td>212</td>
</tr>
<tr>
<td>12.3.2</td>
<td>A Scheduling Problem</td>
<td>216</td>
</tr>
<tr>
<td>12.4</td>
<td>Other Approaches</td>
<td>219</td>
</tr>
<tr>
<td>13</td>
<td>Continuous Relaxations</td>
<td>225</td>
</tr>
<tr>
<td>13.1</td>
<td>Relaxations of Discrete Constraints</td>
<td>227</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Propositional Formulas</td>
<td>227</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Cardinality Rules</td>
<td>229</td>
</tr>
<tr>
<td>13.1.3</td>
<td>All-different Constraints</td>
<td>231</td>
</tr>
<tr>
<td>13.2</td>
<td>Relaxations for Mixed Constraints</td>
<td>233</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Weak Continuous Relaxations</td>
<td>234</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Lifted versus Projected Relaxations</td>
<td>237</td>
</tr>
<tr>
<td>13.3</td>
<td>Lifted Relaxations</td>
<td>239</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Jeroslow's Representability Theorem</td>
<td>240</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Disjunctions: Big-M Relaxations</td>
<td>244</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Disjunctions: Convex Hull Relaxation</td>
<td>248</td>
</tr>
<tr>
<td>13.4</td>
<td>Projected Relaxations</td>
<td>249</td>
</tr>
</tbody>
</table>
13.4.1 Projection Methods for Linear Systems 250
13.4.2 Disjunctions: Elementary Inequalities 252
13.4.3 Disjunctions: Supporting Inequalities 256
13.4.4 Disjunctions: Optimal Separating Inequalities 257
13.4.5 Fixed Charge Problems 260
13.4.6 Piecewise Linear Functions 263
13.4.7 Element Constraints 265
13.4.8 Extended Element Constraints 267

14 Decomposition Methods 271
 14.1 Outer Approximation 272
 14.1.1 The Basic Algorithm 272
 14.1.2 Getting Started 273
 14.2 Benders Decomposition 276
 14.2.1 The Classical Method 276
 14.2.2 Linear Disjunctions 278
 14.2.3 Generalized Benders Decomposition 281
 14.2.4 Nonlinear Disjunctions 282

15 Branching Rules 285
 15.1 General-Purpose Branching Heuristics 286
 15.1.1 Rationales for the Heuristics 286
 15.1.2 Conclusion 292
 15.2 Branching for Logical Clauses 292
 15.2.1 Empirical Behavior of Branching Rules 293
 15.2.2 The Jeroslow-Wang Rule 294
 15.2.3 The Maximum Satisfiability Hypothesis 294
 15.2.4 A Simplification Hypothesis 296
 15.2.5 Conclusions 298
 15.3 First-Fail Heuristics 299
 15.3.1 An Elementary Analysis 300
 15.3.2 A More Refined Analysis 302

16 Relaxation Duality 305
 16.1 Strengthenings and Relaxations 306
 16.1.1 A Strengthening Strategy 307
 16.1.2 A Relaxation Strategy 309
 16.2 Branching 310
16.3 Mixed Strategies

16.3.1 Relaxation of Strengthenings 313
16.3.2 Strengthenings of a Relaxation 315

16.4 Relaxation Duality

16.4.1 The Relaxation Dual 320
16.4.2 The Lagrangean and Surrogate Duals 321

17 Inference Duality

17.1 Constraint Generation 327
17.1.1 Constraints as Cuts 327
17.1.2 Constraint-Based Search 329

17.2 Basic Definition 331
17.3 Linear Programming Duality 333
17.3.1 Linear Inference 333
17.3.2 Sensitivity Analysis 335

17.4 Duality for Logical Clauses 337
17.4.1 The Dual Solution as a Resolution Proof 338
17.4.2 Recovering a Dual from a Primal Solution 340

17.5 Duality for Horn Clauses 343
17.6 0-1 Linear Programming Duality 347
17.6.1 Recovering an Indirect Optimality Proof 348
17.6.2 Recovering a Direct Optimality Proof 351
17.6.3 Sensitivity Analysis 355

18 Search Strategies

18.1 Branching and Constraint-Based Search 362
18.1.1 Search over Partial Assignments 363
18.1.2 Branching as Constraint-Based Search 367
18.1.3 Parallel Resolution Search 369

18.2 Dependency-Directed Backtracking 376
18.2.1 Backjumping 376
18.2.2 Backchecking and Backmarking 380

18.3 Dynamic Backtracking 382
18.3.1 Partial-Order Dynamic Backtracking 384
18.3.2 Generalized Dynamic Backtracking 385

19 Logic-Based Benders Decomposition

19.1 Benders Decomposition in the Abstract 389