Engineering Properties of Soils and Rocks

Fourth Edition

Fred G. Bell
Department of Geology and Applied Geology
University of Natal, Durban, South Africa
Contents

Preface ix

1 Properties, Description and Classification of Soils 1

1.1 Origin of soil 1
1.2 Basic properties of soil 2
1.3 Particle size distribution 3
1.4 Consistency limits 5
1.5 Soil classification and description 7
1.6 Shear strength of soil 17
1.7 Consolidation 21
References 23

2 Coarse Grained Soils 24

2.1 Introduction 24
2.2 Deformation of coarse grained soil 26
2.3 Strength and distortion 27
2.4 Locked sands 31
2.5 Some examples of sand deposits 32
2.6 Liquefaction of sands 34
2.7 Gravels and sands as construction materials 40
References 43

3 Silt, Loess and Brickearth 46

3.1 Silt 46
3.2 Loess 48
3.3 Brickearth 54
3.4 Collapsible soil 58
References 66

4 Clay Soils 68

4.1 Introduction 68
4.2 Microstructure of clay soils 69
4.3 Index properties of clay soils 74
4.4 Volume changes in clay soils: swelling and shrinkage 83
4.5 Volume changes due to loading and unloading 97
4.6 The strength of clay soils 98
4.7 Weathering of clay soils 103
4.8 Fissures in clay 106
References 109

5 Soils of Cold Climates 113
5.1 Character and types of tills 113
5.2 Basic properties of tills 117
5.3 Compressibility and strength of tills 120
5.4 Fluvio-glacial deposits 126
5.5 Quick clays 136
5.6 Frozen ground and periglacial conditions 142
5.7 Frost heave 150
References 153

6 Tropical and Subtropical Soils 156
6.1 Introduction 156
6.2 Classification of tropical residual soils 157
6.3 Laterite, laterization and red clays 169
6.4 Physical properties and engineering behaviour of lateritic soils 170
6.5 Andosols and halloysitic soils 181
6.6 Black clays: vertisols 181
6.7 Dispersive soils 182
6.8 Soils of arid regions 190
References 198

7 Organic Soils: Peat 202
7.1 Introduction 202
7.2 Development of peatlands and types of peat deposit 203
7.3 Humification of peat 206
7.4 Description and classification of peat 207
7.5 Basic properties of peat 207
7.6 Consolidation and settlement of peat 215
7.7 Subsidence of peatlands due to land drainage 220
References 221

8 Engineering Behaviour of Rocks 223
8.1 Factors controlling the mechanical behaviour of rocks 223
8.2 Deformation and failure of rocks 229
References 238

9 Discontinuities in Rock Masses 240
9.1 Nomenclature of joints 240
9.2 Origins of joints 240
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Description of jointed rock masses</td>
<td>244</td>
</tr>
<tr>
<td>9.4</td>
<td>Discontinuities and rock quality indices</td>
<td>249</td>
</tr>
<tr>
<td>9.5</td>
<td>Discontinuity surveys</td>
<td>251</td>
</tr>
<tr>
<td>9.6</td>
<td>Recording discontinuity data</td>
<td>253</td>
</tr>
<tr>
<td>9.7</td>
<td>Strength of discontinuous rock masses and its assessment</td>
<td>253</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>270</td>
</tr>
</tbody>
</table>

10 Weathering of Rocks and Rock Masses

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>273</td>
</tr>
<tr>
<td>10.2</td>
<td>Rate of weathering</td>
<td>274</td>
</tr>
<tr>
<td>10.3</td>
<td>Mechanical weathering</td>
<td>275</td>
</tr>
<tr>
<td>10.4</td>
<td>Chemical and biological weathering</td>
<td>277</td>
</tr>
<tr>
<td>10.5</td>
<td>Salt weathering</td>
<td>281</td>
</tr>
<tr>
<td>10.6</td>
<td>Slaking and swelling of mudrocks</td>
<td>283</td>
</tr>
<tr>
<td>10.7</td>
<td>A note on the weathering of stone in polluted urban atmospheres</td>
<td>285</td>
</tr>
<tr>
<td>10.8</td>
<td>Engineering classification of weathering</td>
<td>289</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>297</td>
</tr>
</tbody>
</table>

11 Description and Classification of Rocks and Rock Masses

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>300</td>
</tr>
<tr>
<td>11.2</td>
<td>Properties of rocks and rock masses</td>
<td>300</td>
</tr>
<tr>
<td>11.3</td>
<td>Basic geotechnical description of the International Society for Rock Mechanics (ISRM)</td>
<td>311</td>
</tr>
<tr>
<td>11.4</td>
<td>Principles of classification</td>
<td>317</td>
</tr>
<tr>
<td>11.5</td>
<td>Review of classifications</td>
<td>318</td>
</tr>
<tr>
<td>11.6</td>
<td>The rating concept</td>
<td>321</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>330</td>
</tr>
</tbody>
</table>

12 Engineering Properties of Igneous and Metamorphic Rocks

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Granite and other plutonic igneous rocks</td>
<td>332</td>
</tr>
<tr>
<td>12.2</td>
<td>Weathering in granite and other plutonic igneous rocks</td>
<td>336</td>
</tr>
<tr>
<td>12.3</td>
<td>Rocks of the volcanic association</td>
<td>338</td>
</tr>
<tr>
<td>12.4</td>
<td>Metamorphic rocks</td>
<td>354</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>357</td>
</tr>
</tbody>
</table>

13 Engineering Properties of Arenaceous and Argillaceous Rocks

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Petrographic properties of sandstones and their relation to geomechanical properties</td>
<td>361</td>
</tr>
<tr>
<td>13.2</td>
<td>Geomechanical properties of sandstones</td>
<td>365</td>
</tr>
<tr>
<td>13.3</td>
<td>Moisture content and strength reduction</td>
<td>370</td>
</tr>
<tr>
<td>13.4</td>
<td>Durability of sandstone</td>
<td>373</td>
</tr>
<tr>
<td>13.5</td>
<td>Character of mudrocks</td>
<td>376</td>
</tr>
<tr>
<td>13.6</td>
<td>Geomechanical properties of mudrocks</td>
<td>381</td>
</tr>
<tr>
<td>13.7</td>
<td>Durability of mudrocks</td>
<td>385</td>
</tr>
<tr>
<td>13.8</td>
<td>Ground movements and mudrocks</td>
<td>389</td>
</tr>
<tr>
<td>13.9</td>
<td>Calcareous mudrocks: marls</td>
<td>391</td>
</tr>
</tbody>
</table>
13.10 Evaluation of mudrocks for brickmaking 393
References 397

14 Carbonate and Evaporitic Rocks 401
14.1 Origin and classification of carbonate rocks 401
14.2 Geomechanical properties of limestones and dolostones 404
14.3 Limestones and dissolution 410
14.4 Durability of limestone as building stone 412
14.5 Chalk: an introduction 416
14.6 Density, porosity and permeability of chalk 416
14.7 Strength and deformability of chalk 423
14.8 Dissolution, durability and frost effects 432
14.9 Evaporitic rocks: introduction 433
14.10 Geomechanical properties of evaporitic rocks 434
14.11 Dissolution of evaporitic rocks 442
References 444

15 Subsurface Water and Ground Conditions 448
15.1 The origin and occurrence of groundwater 448
15.2 Capillary movement in soil 449
15.3 Porosity and permeability 451
15.4 Flow through soils and rocks 456
15.5 Pore pressures, total pressures and effective pressures 460
15.6 Critical hydraulic gradient, quick conditions and hydraulic uplift phenomena 462
15.7 Groundwater abstraction and subsidence 463
15.8 Groundwater control 467
References 474

Index 477