Contents

1 Research Design Principles 1
 1.1 The Legacy of Sir Ronald A. Fisher 1
 1.2 Planning for Research 2
 1.3 Experiments, Treatments, and Experimental Units 3
 1.4 Research Hypotheses Generate Treatment Designs 5
 1.5 Local Control of Experimental Errors 8
 1.6 Replication for Valid Experiments 16
 1.7 How Many Replications? 18
 1.8 Randomization for Valid Inferences 20
 1.9 Relative Efficiency of Experiment Designs 25
 1.10 From Principles to Practice: A Case Study 26

2 Getting Started with Completely Randomized Designs 37
 2.1 Assembling the Research Design 37
 2.2 How to Randomize 39
 2.3 Preparation of Data Files for the Analysis 41
 2.4 A Statistical Model for the Experiment 42
 2.5 Estimation of the Model Parameters with Least Squares 47
 2.6 Sums of Squares to Identify Important Sources of Variation 50
 2.7 A Treatment Effects Model 53
 2.8 Degrees of Freedom 54
 2.9 Summaries in the Analysis of Variance Table 55
 2.10 Tests of Hypotheses About Linear Models 56
 2.11 Significance Testing and Tests of Hypotheses 58
 2.12 Standard Errors and Confidence Intervals for Treatment Means 59
 2.13 Unequal Replication of the Treatments 60
 2.14 How Many Replications for the F Test? 63
2A.1 Appendix: Expected Values 70
2A.2 Appendix: Expected Mean Squares 71

3 Treatment Comparisons 73
3.1 Treatment Comparisons Answer Research Questions 73
3.2 Planning Comparisons Among Treatments 74
3.3 Response Curves for Quantitative Treatment Factors 83
3.4 Multiple Comparisons Affect Error Rates 91
3.5 Simultaneous Statistical Inference 94
3.6 Multiple Comparisons with the Best Treatment 98
3.7 Comparison of All Treatments with a Control 104
3.8 Pairwise Comparison of All Treatments 107
3.9 Summary Comments on Multiple Comparisons 115
3A Appendix: Linear Functions of Random Variables 121

4 Diagnosing Agreement Between the Data and the Model 123
4.1 Valid Analysis Depends on Valid Assumptions 123
4.2 Effects of Departures from Assumptions 123
4.3 Residuals Are the Basis of Diagnostic Tools 124
4.4 Looking for Outliers with the Residuals 131
4.5 Variance-Stabilizing Transformations for Data with Known Distributions 133
4.6 Power Transformations to Stabilize Variances 135
4.7 Generalizing the Linear Model 140
4.8 Model Evaluation with Residual-Fitted Spread Plots 141
4A Appendix: Data for Example 4.1 147

5 Experiments to Study Variances 148
5.1 Random Effects Models for Variances 148
5.2 A Statistical Model for Variance Components 151
5.3 Point Estimates of Variance Components 152
5.4 Interval Estimates for Variance Components 153
5.5 Courses of Action with Negative Variance Estimates 155
5.6 Intraclass Correlation Measures Similarity in a Group 155
5.7 Unequal Numbers of Observations in the Groups 157
5.8 How Many Observations to Study Variances? 158
5.9 Random Subsamples to Procure Data for the Experiment 159
5.10 Using Variance Estimates to Allocate Sampling Efforts 163
5.11 Unequal Numbers of Replications and Subsamples 164
5A Appendix: Coefficient Calculations for Expected Mean Squares in Table 5.9 174
6 Factorial Treatment Designs 175
6.1 Efficient Experiments with Factorial Treatment Designs 175
6.2 Three Types of Treatment Factor Effects 177
6.3 The Statistical Model for Two Treatment Factors 181
6.4 The Analysis for Two Factors 183
6.5 Using Response Curves for Quantitative Treatment Factors 190
6.6 Three Treatment Factors 199
6.7 Estimation of Error Variance with One Replication 205
6.8 How Many Replications to Test Factor Effects? 208
6.9 Unequal Replication of Treatments 208
6A Appendix: Least Squares for Factorial Treatment Designs 225

7 Factorial Treatment Designs: Random and Mixed Models 232
7.1 Random Effects for Factorial Treatment Designs 232
7.2 Mixed Models 237
7.3 Nested Factor Designs: A Variation on the Theme 243
7.4 Nested and Crossed Factors Designs 251
7.5 How Many Replications? 255
7.6 Expected Mean Square Rules 255

8 Complete Block Designs 263
8.1 Blocking to Increase Precision 263
8.2 Randomized Complete Block Designs Use One Blocking Criterion 264
8.3 Latin Square Designs Use Two Blocking Criteria 275
8.4 Factorial Experiments in Complete Block Designs 289
8.5 Missing Data in Blocked Designs 291
8.6 Experiments Performed Several Times 292
8A Appendix: Selected Latin Squares 307

9 Incomplete Block Designs: An Introduction 310
9.1 Incomplete Blocks of Treatments to Reduce Block Size 310
9.2 Balanced Incomplete Block (BIB) Designs 312
9.3 How to Randomize Incomplete Block Designs 313
9.4 Analysis of BIB Designs 315
9.5 Row–Column Designs for Two Blocking Criteria 320
9.6 Reduce Experiment Size with Partially Balanced (PBIB) Designs 322
9.7 Efficiency of Incomplete Block Designs 325
9A.1 Appendix: Selected Balanced Incomplete Block Designs 330
9A.2 Appendix: Selected Incomplete Latin Square Designs 332
9A.3 Appendix: Least Squares Estimates for BIB Designs 336
10 Incomplete Block Designs: Resolvable and Cyclic Designs 339
10.1 Resolvable Designs to Help Manage the Experiment 339
10.2 Resolvable Row-Column Designs for Two Blocking Criteria 342
10.3 Cyclic Designs Simplify Design Construction 345
10.4 Choosing Incomplete Block Designs 352
10A.1 Appendix: Plans for Cyclic Designs 360
10A.2 Appendix: Generating Arrays for δ Designs 360

11 Incomplete Block Designs: Factorial Treatment Designs 362
11.1 Taking Greater Advantage of Factorial Treatment Designs 362
11.2 2^n Factorials to Evaluate Many Factors 363
11.3 Incomplete Block Designs for 2^n Factorials 369
11.4 A General Method to Create Incomplete Blocks 378
11.5 Incomplete Block Designs for 3^n Factorials 383
11.6 Concluding Remarks 387
11A Appendix: Incomplete Block Design Plans for 2^n Factorials 390

12 Fractional Factorial Designs 391
12.1 Reduce Experiment Size with Fractional Treatment Designs 391
12.2 The Half Fraction of the 2^n Factorial 393
12.3 Design Resolution Related to Aliases 398
12.4 Analysis of Half Replicate 2^{n-1} Designs 399
12.5 The Quarter Fractions of 2^n Factorials 406
12.6 Construction of 2^{n-p} Designs with Resolution III and IV 409
12.7 Genichi Taguchi and Quality Improvement 413
12.8 Concluding Remarks 415
12A Appendix: Fractional Factorial Design Plans 421

13 Response Surface Designs 423
13.1 Describe Responses with Equations and Graphs 423
13.2 Identify Important Factors with 2^n Factorials 426
13.3 Designs to Estimate Second-Order Response Surfaces 431
13.4 Quadratic Response Surface Estimation 440
13.5 Response Surface Exploration 444
13.6 Designs for Mixtures of Ingredients 449
13.7 Analysis of Mixture Experiments 453
13A.1 Appendix: Least Squares Estimation of Regression Models 463
13A.2 Appendix: Location of Coordinates for the Stationary Point 466
13A.3 Appendix: Canonical Form of the Quadratic Equation 467
CONTENTS

14 **Split-Plot Designs** 469
14.1 Plots of Different Size in the Same Experiment 469
14.2 Two Experimental Errors for Two Plot Sizes 472
14.3 The Analysis for Split-Plot Designs 473
14.4 Standard Errors for Treatment Factor Means 478
14.5 Features of the Split-Plot Design 480
14.6 Relative Efficiency of Subplot and Whole-Plot Comparisons 481
14.7 The Split-Split-Plot Design for Three Treatment Factors 483
14.8 The Split-Block Design 483
14.9 Additional Information About Split-Plot Designs 486

15 **Repeated Measures Designs** 492
15.1 Studies of Time Trends 492
15.2 Relationships Among Repeated Measurements 495
15.3 A Test for the Huynh–Feldt Assumption 498
15.4 A Univariate Analysis of Variance for Repeated Measures 499
15.5 Analysis When Univariate Analysis Assumptions Do Not Hold 502
15.6 Other Experiments with Repeated Measures Properties 510
15.7 Other Models for Correlation Among Repeated Measures 511
15A.1 Appendix: The Mauchly Test for Sphericity 518
15A.2 Appendix: Degrees of Freedom Adjustments for Repeated Measures Analysis of Variance 519

16 **Crossover Designs** 520
16.1 Administer All Treatments to Each Experimental Unit 520
16.2 Analysis of Crossover Designs 524
16.3 Balanced Designs for Crossover Studies 530
16.4 Crossover Designs for Two Treatments 536
16A.1 Appendix: Coding Data Files for Crossover Studies 545
16A.2 Appendix: Treatment Sum of Squares for Balanced Designs 547

17 **Analysis of Covariance** 550
17.1 Local Control with a Measured Covariate 550
17.2 Analysis of Covariance for Completely Randomized Designs 553
17.3 The Analysis of Covariance for Blocked Experiment Designs 565
17.4 Practical Consequences of Covariance Analysis 570

References 576
Appendix Tables 587
Answers to Selected Exercises 633
Index 661