MAGNETOSPHERIC PLASMA SOURCES AND LOSSES

Final Report of the ISSI Study Project on Source and Loss Processes

Edited by

BENGT HULTQVIST, MARIT ØIEROSET, GOETZ PASCHMANN
International Space Science Institute, Bern, Switzerland

and

RUDOLF TREUMANN
Max-Planck-Institute of Extraterrestrial Physics, Garching, Germany

Reprinted from Space Science Reviews, Volume 88, Nos. 1–2, 1999
Contents

1 Introduction 1

2 Source processes in the high-latitude ionosphere 7
2.1 Introduction 7
2.2 Ionospheric Context 9
 2.2.1 Ionospheric Plasma Source 9
 2.2.2 Convection 12
 2.2.3 Vertical Flows 12
 2.2.4 Ionospheric Three-Dimensional Circulation 15
2.3 Collisional Bulk Heating 17
 2.3.1 Ionospheric F-Region and Topside observations 17
 2.3.2 Proposed Mechanisms 18
 2.3.3 Theories and Modelling 19
2.4 Transverse Ion Energization 24
 2.4.1 Observations 24
 2.4.2 Processes 30
2.5 Parallel Acceleration of Ions and Electrons 39
 2.5.1 Background 39
 2.5.2 The Auroral Dynamo and Related Current Circuit 41
 2.5.3 Mechanisms for Field-Aligned Acceleration 44
 2.5.4 Observations of Particles and Fields–Constraints on Models 45
 2.5.5 Altitude Distribution of the Field-Aligned Acceleration Process 49
 2.5.6 Parallel Heating of Ions and Electrons 55
2.6 Summary of Ion Outflows 65
 2.6.1 Polar Wind and Auroral Bulk Upflow 66
 2.6.2 Ion Beams and Conics 67
 2.6.3 Effects of Magnetic Activity, Solar Cycle and Seasons 69
 2.6.4 Ion Outflow at High and Low Energies 73
 2.6.5 Total Ion Outflow 73
2.7 Conclusions, Controversies and Open Questions 75
3 Processes leading to plasma losses into the high-latitude atmosphere 85

3.1 Introduction 85

3.2 Main loss processes 88

3.2.1 Current Sheet Pitch-angle Scattering 89
3.2.2 Scattering in Wave-Particle Interaction 90
3.2.3 Precipitation Due to Parallel Electric Fields 91
3.2.4 Adiabatic Drift Motion and Precipitation 94

3.3 Polar Cap-Regions that May be on Open Field Lines 95

3.3.1 Overview of Polar Precipitation 95
3.3.2 Polar Arcs 97
3.3.3 Cusp Aurora 102
3.3.4 'Soft-electron Zone and the LLBL 107
3.3.5 Total Low-energy Precipitation 111

3.4 Precipitation from the Plasma Sheet 113

3.4.1 Current Sheet Scattering 113
3.4.2 Diffuse Electron Precipitation 118
3.4.3 Auroral Arc Precipitation 125
3.4.4 Storm-time Particle Precipitation 128
3.4.5 Dayside Plasma Sheet 129

3.5 Where we stand today 132

4 Source and loss processes in the inner magnetosphere 137

4.1 Introduction 137

4.2 Physical Processes 138

4.2.1 Adiabatic Motion 138
4.2.2 Inner Magnetospheric Electric Field 140
4.2.3 Inner-Magnetospheric Magnetic Fields and Induction Electric Fields 145
4.2.4 Non-Adiabatic Motion 146

4.3 Radiation Belts 152

4.3.1 Spatial Structure and Variability 152
4.3.2 Radiation Belt Source Mechanisms 157
4.3.3 Internal Acceleration Processes 161
4.3.4 Radiation Belt Loss Mechanisms 163
4.3.5 Comprehensive Modelling 168
4.3.6 Summary and Open Questions 169

4.4 Ring Current 170

4.4.1 Spatial Structure and Variability 170
4.4.2 Ring Current Sources 172
CONTENTS

4.4.3 Ring Current Loss Mechanisms 176
4.4.4 Comprehensive Modelling of Ring-Current Processes 180
4.4.5 Summary and Open Questions 184

4.5 Cold and Suprathermal Particles in the Inner Magnetosphere 187
4.5.1 Spatial Structure and Temporal Variability 187
4.5.2 Cold and Suprathermal Particle Source Mechanisms 190
4.5.3 Degradation of Ring Current Ions to Suprathermal Ions 198
4.5.4 Cold and Suprathermal Particle Loss Mechanisms 198
4.5.5 Comprehensive Modelling of Cold and Suprathermal Plasmas 203
4.5.6 Summary and Open Questions 205

5 Plasma transfer processes at the magnetopause 207

5.1 Introduction 207
5.2 Magnetic Reconnection 208
5.2.1 Introduction 208
5.2.2 Theoretical Background 210
5.2.3 Predictions and Tests: Microscale 213
5.2.4 Predictions and Tests: Mesoscale 222
5.2.5 Predictions and Tests: Macroscale 228
5.2.6 Global Flux Estimates 233
5.2.7 Reconnection Summary 235

5.3 Finite Larmor Radius Effects 236
5.3.1 FLR and Gyro-Viscosity 237
5.3.2 Gyro-Viscous Erosion at the Magnetopause 239
5.3.3 Filamentary Transport 240
5.3.4 Gradient and Polarisation Drift Entry 243
5.3.5 Gradient Drift Exit 246

5.4 Diffusion 247
5.4.1 Introduction 247
5.4.2 Diffusion Processes 248
5.4.3 Observations Suggestive of Diffusion 250
5.4.4 Diffusion Coefficient 253
5.4.5 Diffusion Summary 256

5.5 Kelvin-Helmholtz Instability 257
5.5.1 Introduction 257
5.5.2 Theoretical Developments 258
5.5.3 Predictions and Tests 261

5.6 Impulsive Penetration 263
5.6.1 Introduction 263
CONTENTS

5.6.2 Penetration Theory 263
5.6.3 Discussion 265
5.7 The Special Role of the Cusp 270
5.7.1 Introduction 270
5.7.2 Gas Dynamic Model of the Cusp 271
5.7.3 Observations Related to the Gas Dynamic Model 274
5.7.4 Cusp Summary 276
5.8 Summary and Conclusions 277
5.9 Future Directions 279

6 Source and loss processes in the magnetotail 285
6.1 Introduction 285
6.2 Magnetotail Overview 287
6.2.1 Plasma Observations in the Magnetotail 287
6.2.2 Solar Wind Input 293
6.2.3 Ionospheric Inputs 298
6.3 Models 298
6.3.1 Overview 298
6.3.2 MHD Models 300
6.3.3 Kinetic Models 311
6.3.4 Modelling Ionospheric Outflow 319
6.4 Observations 320
6.4.1 Solar Wind Plasma Entry to the Distant Tail 320
6.4.2 Ion Composition 323
6.4.3 Heating and Energisation in the Tail 329
6.4.4 Loss From the Tail 332
6.5 Data-Theory Closure 339
6.6 Alternate Scenarios 344
6.6.1 Evidence for Processes other than Reconnection? 344
6.6.2 The Turbulent Tail 349
6.7 Summary and Remarks 350
6.7.1 General Summary 350
6.7.2 Future Efforts 352

7 Contribution of different source and loss processes to the magnetospheric plasma content 355
7.1 Introduction 355
7.2 Summary of Source Processes 355
7.2.1 The High-Latitude Ionosphere 355
CONTENTS

7.2.2 The Plasmasphere 361
7.2.3 The Magnetopause 362
7.2.4 The Magnetotail 365
7.3 Summary of Loss Processes 367
 7.3.1 Precipitation Into the Atmosphere 367
 7.3.2 Loss Through the Magnetopause 368
 7.3.3 Ion Loss Through the Distant Tail 369
7.4 Balance Between Source and Loss Processes 370

8 Magnetospheric plasma sources and losses:
 future directions 373
 8.1 Introduction 373
 8.2 Identification of Global Sources 374
 8.3 Search for and Identification of Reconnection Site 377
 8.4 Entry and Transport Processes 377
 8.5 Mixing of the Solar Wind and Ionospheric Sources 379
 8.5.1 Role of Ion Composition Measurements 380
 8.6 Losses 381

APPENDIX A / Simulation models 383
 A.1 MHD models 383
 A.2 Basics of Large Scale Kinetic (LSK) Models 385

APPENDIX B / Diffusive Processes 389
 B.1 Basic Concepts 389
 B.2 Anomalous Diffusion 391

APPENDIX C / List of symbols and conventions used 403

APPENDIX D / Abbreviations and Acronyms 405

Index 469