Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts

U.M. Ebert, W. van Saarloos

Report MAS-R9908 April 1999
Contents

I Introduction 4
A Outline of the problem 4
B Pushed versus pulled fronts, selection and convergence 6
C Sketch of method and results on front relaxation in the pulled regime 7
D Organization of the paper 10

II Stability, selection and convergence in the nonlinear diffusion equation 12
A Notation and statement of problem 12
B Uniformly translating fronts: candidates for attractors and transients 13
C Linear stability analysis of moving front solutions 16
1 Schrödinger stability analysis 17
2 Linear perturbations outside the Hilbert space 18
D Consequences of the stability analysis for selection and rate of convergence 20
1 Pushed regime: \(v_c = v^* \) 20
2 Fronts into metastable states 21
3 Pulled regime: \(v_c = v^* \) 21
E The dynamics of the leading edge of a front 22
1 Equation linearized about \(\phi = 0 \) 22
2 Leading edge representation of the full equation 23
F Summary of selection and relaxation mechanism; “Marginal stability”; interior and edge dominated dynamics 24

III Universal pulled convergence of steep initial conditions in the nonlinear diffusion equation 26
A Observations which motivate our approach 26
1 Asymptotic steepness of leading edge determines rate of convergence 26
2 Interior follows leading edge: uniform convergence 27
3 Choose proper frame and subtraction for the interior 27
4 Choose proper expansions and match leading edge to interior 27
B Expansion in the interior region 27
C Interior shape expanded towards the leading edge 29
D Analysis of the leading edge 30

IV Simulations of pulled fronts in the nonlinear diffusion equation 34
A Numerical features specific to pulled fronts 34
1 Effect of finite difference code 34
2 Effect of finite system size 34

B Simulation data 35
1 \(f(\phi) = \phi - \phi^3 \): pulled fronts 35
2 \(f(\phi) = \phi + \phi^3 - \phi^5 \): pushed versus pulled fronts 37
C Comparison of simulations and analytical predictions 38
1 Analysis of the velocity data 38
2 Analysis of the shape data 41

V Generalization of pulling to higher order (sets of) equations 42
A Introduction 42
B Basic assumptions underlying the relaxation analysis of pulled fronts; generalization of Table III 43
C Pulled front relaxation in single p.d.e.’s of first order in time 43
1 The pulled velocity \(v^* \) 44
2 Uniformly translating solutions \(\Phi_v \) 45
3 The leading edge representation 46
4 The relaxation analysis 47
D Generalization to single p.d.e.”s of higher order in time 48
E Further generalizations 51
1 Long time asymptotics of the Green’s function via a Fourier-Laplace transformation 52
2 The case of a single field 53
3 The case of a set of fields and possible projections 53
4 The freedom of projection and the universality of Tables I and IV 54
F Applications 55
1 The EFK equation 55
2 The streamer equations 56
3 A difference-differential equation 57
4 Diffusion equation with second order time derivative 58
5 An extension of the F-KPP equation with a memory kernel 58
6 Exact results for numerical finite difference schemes 59

VI Summary and outlook 61
A Summary of the main results 61
B Summary of the main conceptual steps of the analysis 61
C Open problems 62
D The multiplicity of front solutions and of solutions of the saddle point equations 62
E A step by step guideline for applying these results 63
F The subtle role of the nonlinearities: an alternative intuitive explanation 63

APPENDIXES 65
A An upper bound for v_c in the nonlinear diffusion equation 65
B The generalized nonlinear diffusion equation 65
C Analytical solutions for pushed nonlinear diffusion fronts and transition to pulling 66
D General integration of $g_{n/2}(z)$ 67
E Algebraic convergence at the pushed/pulled transition 67
F Multiplicity of fronts and linear eigenmodes for reflection symmetric equations of first order in time 69
G Strongly heteroclinic orbits and change of stability at v^* 69
H Relation between the generalized diffusion constants D_n and the dispersion relation 70
I Edge analysis of uniformly translating pulled fronts with $M = 1$ 70
J Leading edge projections for coupled equations: an example 71
K Pinch point versus saddle point analysis 72