SPACE TECHNOLOGY
AND APPLICATIONS
INTERNATIONAL FORUM—1998

1st Conference on Global Virtual Presence
1st Conference on Orbital Transfer Vehicles
2nd Conference on Applications of Thermophysics in Microgravity
3rd Conference on Commercial Development of Space
3rd Conference on Next Generation Launch Systems
15th Symposium on Space Nuclear Power and Propulsion

Albuquerque, NM January 1998

PART TWO

EDITOR
Mohamed S. El-Genk
Institute for Space and Nuclear Power Studies,
University of New Mexico

American Institute of Physics
Woodbury, New York
[D4] ADVANCES AND RECENT COMMERCIAL ACCOMPLISHMENTS IN BIOPRODUCT DEVELOPMENT IN SPACE

Investigation of PACE™ Software and VeriFax’s Impairoscope Devices for Quantitatively Measuring the Effects of Stress

G. W. Morgenthaler, G. R. Nuñez, A. M. Botello, J. Soto, R. Shrairman, and A. Landau

Autonomous Biological System—A Unique Method of Conducting Long Duration Space Flight Experiments for Pharmaceutical and Gravitational Biology Research

G. A. Anderson, T. K. MacCallum, J. E. Poynter, and D. Klaus

A Model System for Studies on Bone Matrix Formation by Osteogenic Cells in Microgravity

T. M. Quinton, H. K. Fattaey, F. Motaffaf, and T. C. Johnson

Benefits Attained from Space Flight in Pre-Clinical Evaluation of Candidate Drugs

L. S. Stodieck, T. Bateman, R. Ayers, V. Ferguson, and S. Simske

Antibiotic Production in Space

D. Klaus, R. Brown, and K. Cierpik

The Use of Space as a Model for Spinal Cord Regeneration Experiments

K. I. Clark

[NA]* indicates that the paper was not available at time of press

[D5] TELE-SCIENCE TOOLS AND TECHNOLOGY FOR IMPROVING SPACE AND TERRESTRIAL LABORATORY RESEARCH CAPABILITIES

Utilization of Commercial Communication Systems for Space Based Research Applications

C. Overmyer and C. Thompson

COMCAP: a Cost-Effective Commercial Capsule System for Microgravity Research in Low Earth Orbit

J. M. Cassanto and J. K. von der Lippe

Single Board Controller for Spaceflight Payloads

V. Strength

Advanced Imaging Microscope Tools Applied to Microgravity Research Investigations

L. Peterson, J. Samson, D. Conrad, and K. Clark

[D6] PRODUCTS APPROACHING THE MARKET PLACE RESULTING FROM MICROGRAVITY RESEARCH

A Hot Electrons-Based Wide Spectrum On-Orbit Optical Calibration Source

D. Starikov, I. Berichev, N. Medelci, E. Kim, Y. Wang, and A. Bensaoula

Influence of Growth Transients on Interface and Composition Uniformity of Ultra Thin In(As,P) and (In,Al,Ga)As Epilayers Grown by Chemical Beam Epitaxy

F. Newman, L. Aguilar, A. Freundlich, M. F. Vilela, and C. Monier

Lunar Regolith Thin Films: Vacuum Evaporation and Properties

A. Freundlich, T. Kubricht, and A. Ignatiev

Boron Carbon Nitride Materials for Tribological and High Temperature Device Applications

Conducting and Interfacial Properties of Epitaxial SVO Films

D. L. Ritums, N. J. Wu, X. Chen, D. Liu, and A. Ignatiev

(NA)* indicates that the paper was not available at time of press
[D7] SPACE POWER

Simplified Proton Exchange Membrane Fuel Cells for Space and Terrestrial Applications 679
H. P. Dhar, K. A. Lewinski, and V. K. Tripathi

Magnetic Bearing Development for Support of Satellite Flywheels ... 685
A. Palazzolo, M. Li, A. Kenny, S. Lei, D. Havelka, and A. Kascak

Flywheel Magnetic Bearing Field Simulation with Motion Induced Eddy Currents (NA)*
D. Havelka, A. Palazzolo, A. Kenny, and A. Kascak

Improvement and Optimization of InAsP1−xInP Multi Quantum Well Solar Cells 693
L. Aguilar, F. Newman, I. Serdiukova, C. Monier, M. F. Vilela, A. Freundlich,
A. Delaney, and S. Street

Molecular Beam Epitaxy of InP Single Junction and InP/In0.43Ga0.57As Monolithically
Integrated Tandem Solar Cells using Solid Phosphorous Source Material .. 698
A. Delaney, K. Chin, S. Street, F. Newman, L. Aguilar, A. Ignatiev, C. Monier, M. Vilela,
and A. Freundlich

[D8] SPACE-SMALL BUSINESS

INNOVATIVE RESEARCH HIGHLIGHTS:
1996—1997—I

Applying Dynamic Control To Crystallization in Space ... 703
L. Amowitz

High Temperature Transparent Furnace Development ... 711
S. C. Bates, K. S. Knight, and D. W. Yoel

Microscopic and Macroscopic Modeling of Layer Growth Kinetics and Morphology
in Vapor Deposition Processing .. 718
P. J. Stout, S. A. Lowry, and A. Krishnan

Concentration of Atomic Oxygen in Low Earth Orbit and in the Laboratory
for Use in High Quality Oxide Thin Film Growth .. 724
J. A. Schultz, K. Eipers-Smith, K. Waters, S. Schultz, M. Sterling, D. Starikov,
A. Bensaoula, T. Minton, and D. J. Garton

[D9] SPACE-SMALL BUSINESS

INNOVATIVE RESEARCH HIGHLIGHTS:
1996—1997—II

Benzoporphyrin Derivative and Light-Emitting Diode for Use in Photodynamic
Therapy: Applications of Space Light-Emitting Diode Technology .. 729
H. T. Whelan, J. M. Houle, D. M. Bajic, M. H. Schmidt, K. W. Reichert, II,
and G. A. Meyer

Verifax: Biometric Instruments Measuring Neuromuscular Disorders/Performance
Impairments .. 736
G. W. Morgenthaler, R. Shrairman, and A. Landau

Novel Approaches to Calibration of High Temperature Furnaces .. 743
L. Vujisic and S. Motakef

Microgravity Processing of Polymers for NLO Applications ... 749
D. J. Trantolo, J. D. Gresser, Y. Y. Hsu, R. L. White, and D. L. Wise

[D10] MICROGRAVITY SCIENCES—
RESULTS TO COMMERCIALIZATION

D. A. Pacas, J. J. Moore, F. Schowengerdt, and T. W. Wolanski

(NA)* indicates that the paper was not available at time of press
Microgravity Effects on Magnetotactic Bacteria ... 761
J. E. Urban
Resistance to Chemical Disinfection Under Conditions of Microgravity 765
G. L. Marchin
Commercialization of Microgravity Experimental Results Through Improvements to Ceramic Fabrication Process ... (NA)*
R. Sood
Development of THM Crystal Growth Technology to Produce Commercial Terrestrial Semiconductors and to Aid Microgravity Experimental Design .. 769
R. F. Redden, N. Audet, R. P. Bult, J. R. Butler, and P. W. Nasmyth
Measurement of Soret Coefficients of Crude Oil in Microgravity ... 773
D. Hart, J-C. Legros, and F. Montel

[D11] COMMERCIAL OPPORTUNITIES UTILIZING THE INTERNATIONAL SPACE STATION

Space Station Access with VentureStar™ ... 779
W. Faulconer and D. Randolph
Commercial Opportunities Utilizing the International Space Station .. 786
M. E. Kearney, P. Mongan, C. M. Overmyer, and K. Jackson
Boeing's Mir Pathfinder Project and its Implications for Commercializing International Space Station ... (NA)*
R. J. Foss and T. Johnston
Commercial Biotechnology Processing on International Space Station 793
M. S. Deuser, J. C. Vellinger, J. R. Hardin, and M. L. Lewis
Commercial Opportunities for the On-Orbit Use of the Extreme Temperature Translator 798
M. W. Riley, S. Noojin, and J. E. Smith, Jr.
Commercial Life Sciences Prospects for the International Space Station-Building on Lessons Learned .. 803
G. W. Morgenthaler and J. Berryman

[D12] SPACE LIFE SCIENCES AND THE PUBLIC GOOD

Measuring the Returns to NASA Life Sciences Research and Development 810
H. R. Hertzfeld
Preparing the Way, Space Life Sciences Outreach .. 816
D. Atchison and R. A. Grymes
Fundamental Gravitational Research and Emerging Technologies: The Connection 822
M. D. Ross, J. Smith, K. Montgomery, R. Cheng, and S. Linton
Earth-Based Applications of Space Biosensor Technologies ... (NA)*
J. W. Hines
NASA's Telemedicine Testbeds: Commercial Benefit ... 829
C. R. Doarn and R. Whitten
Commercialization of Regenerative Life Support Systems ... 835
M. Flynn and D. Bubenheim

[D13] COMMERCIAL APPLICATIONS OF COMBUSTION IN SPACE

Opportunities for Microgravity Research in the Development of Practical Catalytic Combustion Systems .. 840
R. J. Kee and L. Raja

(NA)* indicates that the paper was not available at time of press
High-Strength Diamond Drills Produced by Combustion Synthesis ...(NA)*
B. Radtke
Diode-Laser-Based Combustion Sensing ...(NA)*
D. Kane
Commercial Production of Heavy Metal Fluoride Glass Fiber in Space 847
D. S. Tucker, G. L. Workman, and G. A. Smith
Modeling Study of Water-Mist as Flame Suppressant 852
R. Srivastava, J. T. McKinnon, and J. R. Butz
Commercial Potential of a Burner Developed for Investigating Laminar
and Turbulent Premixed Flames in μg ... 858
R. K. Cheng, M. R. Johnson, and L. W. Kostiuk

THIRD CONFERENCE ON
NEXT GENERATION LAUNCH SYSTEMS

[E1] X-33 UPDATE

X-33 Flight Assurance Status ... (NA)*
C. Meade
VentureStar™—A Revolutionary Space Transportation Launch System 867
R. I. Baumgartner
Systems Integration Challenges for the X-33 Program(NA)*
J. Laube
A Primer on the Use of Commercial Off-the-Shelf Software in the Development
of Low Cost Launch Control Systems .. 875
S. M. Tobin and R. Summerford

[E2] MILITARY SPACEPLANE

Feasibility of Atmospheric Skipping for Reusable Launch Vehicles (NA)*
R. H. Moszée
Atmospheric Considerations for Skipping Spaceplane Trajectories 881
D. Stapleton, T. Galati, and F. McDougall
Mini-Spaceplane Center Wingbox Technology Demonstrator (NA)*
E. R. Anselmo and A. Del Mundo
Developing the Military Spaceplane—From Concept to Hardware 887
P. L. Klevatt and W. A. Gaubatz
The Military Spaceplane Integration Technology Testbed (NA)*
C. Johnston

[E3] COMMERCIALIZATION
OF LAUNCH SYSTEMS

The Commercial Implications of the EELV Program .. 888
S. E. Sasso
SeaLaunch Program ... (NA)*
J. Stenovec
The Commercial Atlas IIAR Program ... 893
R. L. Hauser, Jr.
Transportation Requirements for the Fast Freight Market (NA)*
D. G. Andrews, M. J. Dunn, and M. Rubeck

(NA)* indicates that the paper was not available at time of press
Development of a Quick-Reaction Commercial Launch Site at the Cape Canaveral Air Station .. 899
R. L. Schuiling and E. A. O'Connor
Economic Trade-offs for Spaceplanes Over a Large Range of Projected Traffic .. 905
J. P. Penn and C. A. Lindley

[E4] INTERNATIONAL PROGRAMS

The European Space Agency's FESTIP Initiative .. 921
D. Burleson
Russian Aluminum-Lithium Alloys for Advanced Reusable Spacecraft 926
R. O. Charette, B. G. Leonard, W. F. Bozich, and D. A. Deamer
Current Status of the H-II Orbiting Plane-Experimental (HOPE-X) Development 937
T. Fukui, K. Miho, and E. Nakano
Comparison of Basic Launch Vehicles of Leading Space Countries 943
Y. G. Korotkiy
The Need and Processes for International Cooperation in Future Human Space Exploration .. (NA)*
W. H. Siegfried

[E5] COST AND OPERATIONS

Insuring RLV Transportation Services .. 949
J. S. Greenberg
A Survey of Space Cost Models .. 956
W. T. Harwick
A Novel Methodology for Estimating Upper Limits of Major Cost Drivers for Profitable Conceptual Launch System Architectures ... 962
R. E. Rhodes and R. J. Byrd
Researching the Cost of Launch Operations .. (NA)*
A. Matthews

[E6] LESSONS LEARNED

DC-XA Auxiliary Propulsion System Lessons Learned .. (NA)*
K. E. Dayton
Delta Clipper Lessons Learned for Increased Operability in Reusable Space Vehicles 969
R. O. Charette, D. A. Steinmeyer, and R. R. Smiljanic
The Benefits of X-Vehicles—DC-XA and Beyond ... (NA)*
B. G. Leonard, R. O. Charette, D. A. Deamer, and P. W. Ferguson
Lessons Learned and Results of the DC-XA Program .. (NA)*
D. L. Dumbacher
Lessons Learned from LASRE Development .. (NA)*
P. Best

[E7] ADVANCED/NOVEL CONCEPTS

Highly Reusable Space Transportation: Advanced Concepts and Technologies that may Achieve $100/Lb to Low Earth Orbit .. (NA)*
J. C. Mankins
Very High Thrust-to-Weight Rocket Engines .. 979
J. F. Glass, B. D. Goracke, and D. J. H. Levack
Magnetohydrodynamic Propulsion Using On-Board Sources .. 985
J. A. Martin

(NA)* indicates that the paper was not available at time of press
Very Advanced HRST Exploiting Off-Board Beamed Power
L. N. Myrabo

An Advanced Military Space Plane Design Concept

[E8] ENTREPRENEUR INITIATIVES

Incrementally Developing a Cultural and Regulatory Infrastructure for Reusable Launch Vehicles
R. Simberg

Space Transportation: Historical Development, Barriers to Progress and the Way Ahead
M. S. Kelly

Commercial Space Development Needs Cheap Launchers
J. W. Benson

OASIS: A Global Commercial Space Transportation System
L. Ortega, T. Gregory, and J. R. Briarton

An Affordable RBCC-Powered 2-Stage Small Orbital Payload Transportation Systems Concept Based on Test-Proven Hardware
W. J. D. Escher

[E9] LAUNCH VEHICLE TECHNOLOGIES—I

Experimental Investigation of a Graphite-Composite Intertank Section for a Reusable Launch Vehicle
J. W. Sawyer and H. Bush

Thermo-Mechanical Evaluation of Carbon–Carbon Primary Structure for SSTO Vehicles
H. C. Croop, H. B. Lowndes III, S. E. Hahn, and C. A. Barthel

Development of Actively Cooled Panels for Advanced Propulsion Systems
B. K. Hauber

Mechanical Attachments for Flexible Blanket TPS
C. W. Newquist, D. M. Anderson, M. W. Shorey, and K. S. Preedy

[E10] LAUNCH VEHICLE TECHNOLOGIES—II

Single Stage and Thrust Augmented Reusable Launch Vehicle Stability
P. A. Tanck and K. B. Steadman

Design, Fabrication and Test of a Liquid Hydrogen Titanium Honeycomb Cryogenic Test Tank for Use as a Reusable Launch Vehicle Main Propellant Tank
P. B. Stickler and P. C. Keller

Thermal Structures Technology Development for a Reusable Launch Vehicle's Cryogenic Propellant Tanks
T. F. Johnson

Next-Generation Thermal Protection System Materials for Reusable Launch Vehicles
S. Heng and B. E. Williams

[E11] LAUNCH VEHICLE PROPULSION

The Next Generation in Rocket Engines—The RD-180
R. N. Ford, W. E. Pipes, III, and J. F. Josef

The RS-68 LOX Hydrogen Engine for EELV
B. Beckman

(NA)* indicates that the paper was not available at time of press
PART THREE

FIFTEENTH SYMPOSIUM ON SPACE NUCLEAR POWER AND PROPULSION

[F1] POWER BEAMING—I

Review of Direct-Drive Laser Space Propulsion Concepts .. 1073
C. Phipps

Flight Experiments and Evolutionary Development of a Laser Propelled, Trans-Atmospheric Vehicle ... (NA)*
L. N. Myrabo, F. B. Mead, Jr., and D. G. Messitt

Nuclear Pumped Lasers for Space Power Beaming ... 1081
M. Petra and G. H. Miley

Use of a Powered Photon Beam for Space Applications ... 1087
H. Takahashi, Y. An, and Y. Yamazaki

The SABER Microwave-Powered Helicopter Project and Related WPT Research at the University of Alaska Fairbanks .. 1092
J. Hawkins, S. Houston, M. Hatfield, and W. Brown

[F2] ADVANCED RADIOISOTOPE POWER SOURCES

Advanced Converter Technology Evaluation and Selection for ARPS 1098
J. F. Mondt, M. L. Underwood, and B. J. Nesmith

Small Universal Thermopile Power Source for Space and Terrestrial Applications (NA)*
J. Bass and N. Elsner

Recommended Design and Fabrication Sequence of AMTEC Test Assembly 1107
A. Schock, V. Kumar, H. Noravian, and C. T. Or

The Development of a Milliwatt-Level Radioisotope Power Source 1119
D. C. Bugby and T. R. Mc Birney

Microminiature Thermionic Converter Demonstration Testing and Results (NA)*
F. J. Wyant

[F3] MISSIONS

High Risk Low Cost Mars Missions Scenarios .. 1125
B. N. Cassenti and R. W. Bass

MITEE: A New Nuclear Engine Concept for Ultra Fast, Lightweight Solar System Exploration Missions ... 1131
J. Powell, J. Panagua, H. Ludewig, G. Maise, and M. Todosew

Reducing the Risk to Mars: The Gas Core Nuclear Rocket 1138
S. D. Howe, B. De Volder, L. Thode, and D. Zerkle

Interplanetary Missions with the GDM Propulsion System .. 1145
T. Kammash and W. Emrich, Jr.

(NA)* indicates that the paper was not available at time of press