Catherine Sulem Pierre-Louis Sulem

The Nonlinear Schrödinger Equation
Self-Focusing and Wave Collapse
Contents

Preface

I Basic Framework

1 The Physical Context
 1.1 Weakly Nonlinear Dispersive Waves
 1.1.1 A Weakly Nonlinear Dispersion Relation
 1.1.2 Derivation in Terms of Fourier-Mode Coupling
 1.1.3 Introduction to Multiple-Scale Analysis
 1.2 The Example of Optical Waves
 1.2.1 Waves in a Dielectric
 1.2.2 The Paraxial Approximation in a Linear Medium
 1.2.3 Static Modulation in a Kerr Medium
 1.2.4 Time Dispersion of Ultrashort Wave Trains
 1.3 Basic Dynamical Effects
 1.3.1 Modulational Instability
 1.3.2 Solitons in One Space Dimension
 1.3.3 Soliton Instability for Transverse Perturbations
 1.4 Fluid-Dynamical Form of the NLS Equation

2 Structural Properties
 2.1 Variational Formulation
 2.1.1 Lagrangian Structure
 2.1.2 Hamiltonian Structure
4.5 Further Stability Results .. 91
 4.5.1 Asymptotic Stability Results 91
 4.5.2 Ground-State Orbital Stability and Global
 Existence .. 92

5 Blowup Solutions .. 93
 5.1 Finite-Time Blowup ... 93
 5.1.1 Case of Finite Variance 93
 5.1.2 Extensions to Solutions with Infinite Variance .. 98
 5.2 Analysis of the Blowup 103
 5.2.1 Rate of Blowup 103
 5.2.2 A Self-Similar Solution at Critical Dimension .. 104
 5.2.3 Solutions with Exactly \(k \) Blowup Points 106
 5.2.4 \(L^2 \)-Norm Concentration at Critical Dimension .. 106

III Asymptotic Analysis near Collapse 113

6 Numerical Observations ... 115
 6.1 Capturing the Blowup Structure 117
 6.1.1 A Scale Transformation for Isotropic Solutions .. 117
 6.1.2 Dynamic Rescaling 118
 6.2 Simulation of Isotropic Collapse 120
 6.2.1 Stability of Supercritical Self-Similar Solutions .. 120
 6.2.2 The NLS Equation at Critical Dimension 121
 6.2.3 An Adaptive Galerkin Finite Element Method 123
 6.3 Simulation of Non-Radially Symmetric Solutions 126
 6.3.1 Anisotropic Dynamic Rescaling 126
 6.3.2 Stability of Isotropic Collapse 130
 6.3.3 An Iterative Grid Redistribution Method 131

7 Supercritical Collapse .. 133
 7.1 Self-Similar Blowup Solutions 133
 7.1.1 Properties of the Profile 134
 7.1.2 Spatial Extension of the Self-Similar Profile ... 136
 7.1.3 Rate of Convergence to Self-Similar Solutions ... 137
 7.2 Dissipation and Postcollapse Dynamics 138

8 Critical Collapse ... 141
 8.1 Self-Similar Profile near Critical Dimension 142
 8.1.1 Constraints on the Self-Similar Profile 142
 8.1.2 A Nonlinear Eigenvalue Problem 142
 8.1.3 A Nonuniform Limit 147
 8.1.4 Remarks on the Critical Profile 150
 8.2 Asymptotic Solutions at Critical Dimension 151
12.1.1 Boundary Conditions .. 221
12.1.2 Expression of the Mean Flow 222
12.1.3 Conservation Properties 223
12.2 Standing-Wave Solutions 226
 12.2.1 The Elliptic–Elliptic Case 226
 12.2.2 The Hyperbolic–Elliptic case 228
12.3 The Initial Value Problem 230
 12.3.1 Subsonic Wave Packet 230
 12.3.2 Supersonic Wave Packets 232
12.4 Rate of Blowup for Elliptic–Elliptic DS 234
12.5 Solutions of Elliptic–Hyperbolic DS 240

V Coupling to Acoustic Waves ... 243

13 Langmuir Oscillations .. 245
 13.1 Derivation of the Zakharov Equations 246
 13.1.1 The Two-Fluid Model 246
 13.1.2 The Vector Zakharov Equations 247
 13.1.3 The Electrostatic Limit 250
 13.1.4 Generation of a Large-Scale Magnetic Field 252
 13.2 Rigorous Results ... 254
 13.2.1 Existence Theory 254
 13.2.2 The Subsonic Limit 256
 13.2.3 The Vector NLS Equation 256
 13.3 Evidence of Collapse 258
 13.3.1 Heuristic Arguments 258
 13.3.2 Simulations in the Electrostatic Approximation .. 259
 13.3.3 Simulations of the Vector Equations 260

14 The Scalar Model .. 263
 14.1 Self-Similar Solutions 264
 14.1.1 Formal Construction 264
 14.1.2 Dynamical Stability 267
 14.2 Existence and Blowup Results 270
 14.2.1 Existence Theory 270
 14.2.2 Blowup Results 274
 14.3 Further Analysis in Two Dimensions 278
 14.3.1 Existence of Self-Similar Blowup Solutions 278
 14.3.2 Mass Concentration Properties 280
 14.3.3 A Sharp Existence Result 281
 14.3.4 Instability of Standing Wave Solutions 283
 14.3.5 An Optimal Lower Bound for the Blowup Rate 283