CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the Sixth Edition</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Examples</td>
<td>xv</td>
</tr>
<tr>
<td>Glossary of Abbreviations</td>
<td>xxi</td>
</tr>
<tr>
<td>17 Estimation and Sufficiency</td>
<td>1</td>
</tr>
<tr>
<td>The estimation problem, 17.1; Identifiability of parameters, 17.6; Consistency, 17.7; Unbiased estimators, 17.9; Corrections for bias: the jackknife and the bootstrap, 17.10; Minimum variance bounds, 17.13; Bhattacharyya bounds, 17.20; Minimum variance unbiased estimation, 17.26; Efficiency, 17.28; Minimum mean square error estimation, 17.30; Sufficient statistics, 17.31; Sufficiency and minimum variance, 17.33; Distributions possessing a single sufficient statistic, 17.36; Sufficiency for several parameters, 17.38; Sufficiency when the range depends on the parameter, 17.40; Statistical curvature, 17.42; Exercises 17.1–17.36.</td>
<td></td>
</tr>
<tr>
<td>18 Estimation: Maximum Likelihood and Other Methods</td>
<td>46</td>
</tr>
<tr>
<td>Maximum likelihood and sufficiency, 18.4; The general one-parameter case, 18.9; Consistency of ML estimators, 18.10; Non-uniqueness of ML estimators, 18.13; Consistency and bias of ML estimators, 18.14; Consistency, asymptotic normality and efficiency of ML estimators, 18.15; Estimation of the asymptotic variance, 18.18; The cumulants of an ML estimator, 18.20; Successive approximation to ML estimators, 18.21; ML estimators for several parameters, 18.22; The case of joint sufficiency, 18.23; The general multiparameter case, 18.26; Non-identical distributions, 18.31; Marginal and conditional likelihood, 18.32; Dependent observations, 18.35; ML estimation of location and scale parameters, 18.36; Estimation with misspecified models, 18.39; Efficiency of the method of moments, 18.40; Order restrictions on parameters: isotonic estimation, 18.42; ML estimation for incomplete data: the EM algorithm, 18.44; Monte Carlo maximum likelihood, 18.47; The use of the likelihood function, 18.50; The method of least squares, 18.52; Other methods of estimation, 18.53; Minimum chi-square estimators, 18.56; Choice between methods, 18.58; Estimating equations, 18.60; Exercises 18.1–18.47.</td>
<td></td>
</tr>
<tr>
<td>19 Interval Estimation</td>
<td>117</td>
</tr>
<tr>
<td>Confidence intervals, 19.3; Graphical representation, 19.6; Central and non-central intervals, 19.7; Conservative confidence intervals and discontinuities, 19.9; Shortest sets of confidence intervals, 19.13; Choice of confidence intervals, 19.16; Confidence intervals for large samples, 19.17; Simultaneous confidence intervals for several parameters, 19.21; Bootstrap confidence intervals, 19.23; The problem of two means, 19.25; Exact confidence intervals based on Student's t distribution, 19.27; Approximate confidence interval solutions, 19.34; Tables and charts of confidence intervals, 19.37; Tolerance intervals, 19.38; Tolerance intervals for a normal distribution, 19.39; Exercises 19.1–19.39.</td>
<td></td>
</tr>
</tbody>
</table>
distribution, 19.39; Distribution-free confidence intervals for quantiles, 19.40; Distribution-free tolerance intervals, 19.42; Fiducial intervals, 19.44; Bayesian intervals, 19.48; Exercises 19.1–19.27.

20 Tests of Hypotheses: Simple Null Hypotheses

Parametric and non-parametric hypotheses, 20.3; Simple and composite hypotheses, 20.4; Critical regions and alternative hypotheses, 20.5; The power of a test, 20.7; Tests and confidence intervals, 20.9; Testing a simple H_0 against a simple H_1, 20.10; BCR and sufficient statistics, 20.14; Estimating efficiency and power, 20.15; Testing a simple H_0 against a class of alternatives, 20.16; UMP tests of more than one parameter, 20.19; UMP tests and sufficient statistics, 20.20; The power function, 20.24; One- and two-sided tests, 20.26; Choice of test size, 20.29; Exercises 20.1–20.16.

21 Tests of Hypotheses: Composite Hypotheses

Composite hypotheses, 21.2; An optimum property of sufficient statistics, 21.3; Test size for composite hypotheses: similar regions, 21.4; Complete parametric families and complete statistics, 21.9; The completeness of sufficient statistics, 21.10; Minimal sufficiency, 21.15; Completeness and similar regions, 21.19; The choice of most powerful similar regions, 21.20; Bias in tests, 21.23; Unbiased tests and similar tests, 21.25; UMPU tests for the exponential family, 21.26; One-sided alternatives, 21.30; Two-sided alternatives, 21.31; Finite-interval hypotheses, 21.32; Geometrical interpretation, 21.34; Testing with the bootstrap, 21.37; Exercises 21.1–21.32.

22 Likelihood Ratio Tests and Test Efficiency

The LR statistic, 22.1; The non-central chi-square distribution, 22.4; The asymptotic distribution of the LR statistic, 22.7; The asymptotic power of LR tests, 22.8; Close approximations to the distribution of the LR statistic, 22.9; LR tests when the range depends upon the parameter, 22.10; The properties of LR tests, 22.16; Test consistency, 22.17; The consistency and unbiasedness of LR tests, 22.18; Unbiased invariant tests for location and scale parameters, 22.20; Other properties of LR tests, 22.24; The relative efficiency of tests, 22.25; Asymptotic relative efficiency, 22.28; ARE and derivatives of power functions, 22.31; The interpretation of the value of m, 22.33; The maximum power loss and the ARE, 22.35; ARE and estimating efficiency, 22.36; Non-normal cases, 22.37; Bahadur efficiency, 22.39; Efficient score tests, 22.40; Exercises 22.1–22.30.

23 Invariance and Equivariance

An example, 23.3; Basic definitions: maximal invariants, 23.7; Invariant distributions and equivariant sufficient statistics, 23.10; Equivariant estimators, 23.12; Invariant tests, 23.14; The invariant pivotal quantity and equivariant confidence regions, 23.16; Other normal examples, 23.19; Non-normal examples, 23.24; Linear model examples, 23.29; Multivariate models, 23.32; Pitman estimators, 23.34; Invariant prior distributions, 23.38; Exercises 23.1–23.34.

24 Sequential Methods

Sequential procedures, 24.2; Sequential tests of hypotheses, 24.7; The operating characteristic, 24.8; The average sample number, 24.9; Wald’s sequential probability ratio test, 24.10; The OC of the SPR test, 24.14; The ASN of the SPR test, 24.15; SPR test for continuous distributions, 24.18; SPR tests in the exponential family,
CONTENTS

24.19; The efficiency of a sequential test, 24.20; Composite sequential hypotheses, 24.21; A sequential t test, 24.23; Sequential estimation: the moments and distribution of n, 24.26; Stein’s double sampling method, 24.32; Distribution-free tests, 24.34; Group sequential tests, 24.35; Statistical quality control, 24.36; Cusum charts, 24.38; Exercises 24.1–24.23.

25 Tests of Fit

Tests of fit, 25.2; The LR and Pearson’s X^2 tests of fit for simple H_0, 25.4; Choice of critical region for X^2, 25.6; Composite H_0, 25.8; The effect of estimation on the distribution of X^2, 25.11; The choice of classes for the X^2 test, 25.20; The equal-probabilities method for constructing classes, 25.22; The moments of the X^2 test statistic, 25.24; Consistency and unbiasedness of the X^2 test, 25.25; The limiting power function of the X^2 test, 25.27; The choice of k with equal probabilities, 25.28; Recommendations for the X^2 test of fit, 25.31; X^2 tests of independence, 25.32; Continuity corrections, 25.33; Lack of power and the use of signs of deviations, 25.34; Other tests of fit, 25.35; Tests of fit based on the sample distribution function: Kolmogorov’s D_n, 25.37; Confidence limits for distribution functions, 25.38; Probability plots, 25.40; Comparison of D_n and X^2 tests, 25.41; Computation of D_n, 25.42; Other tests using the sample distribution function, 25.44; Smooth goodness-of-fit tests, 25.45; Tests of normality, 25.46; Power comparisons, 25.48; Tests for multivariate normality, 25.49; Exercises 25.1–25.17.

26 Comparative Statistical Inference

A framework for inference, 26.3; The frequentist approach, 26.4; Stopping rules, 26.6; Censoring mechanisms, 26.7; Ancillary statistics, 26.12; The conditionality principle, 26.15; Another conditional test principle, 26.17; The justification of conditional tests, 26.18; The sufficiency principle, 26.19; The likelihood principle, 26.21; Fiducial inference, 26.26; Paradoxes and restrictions in fiducial theory, 26.28; Structural inference, 26.30; The LR as a credibility measure, 26.31; Bayesian inference, 26.35; Objective probability, 26.38; Subjective probabilities, 26.41; Bayesian estimation, 26.44; Bayesian tests, 26.46; The relationship between Bayesian and fiducial approaches, 26.48; Empirical Bayes methods, 26.51; Decision theory, 26.52; The James–Stein estimator, 26.56; Discussion, 26.58; Prior information, 26.65; Falsificationism, 26.67; Likelihood-based inference, 26.68; Probability as a degree of belief, 26.69; Reconciliation?, 26.72; Exercises 26.1–26.6.

27 Statistical Relationship: Linear Regression and Correlation

Causality in regression, 27.3; Conditional expectation and covariance, 27.6; The correlation coefficient, 27.8; Linear regression, 27.9; Approximate linear regression: least squares, 27.11; Sample coefficients, 27.12; Standard errors, 27.13; The estimation of p in normal samples, 27.14; Confidence intervals and tests for p, 27.18; Tests of independence and regression tests, 27.20; Other measures of correlation, 27.21; Permutation distributions, 27.22; Rank correlation coefficients, 27.24; Intraclass correlation, 27.27; Tetrachoric correlation, 27.31; Biserial correlation, 27.34; Point-biserial correlation, 27.37; Circular correlation, 27.40; Criteria for linearity of regression, 27.41; A characterization of the bivariate normal distribution, 27.44; Testing the linearity of regression, 27.45; Exercises 27.1–27.36.

28 Partial and Multiple Correlation

Partial correlation, 28.3; Linear regression, 28.9; Approximate linear regression, 28.12; Sample coefficients, 28.14; Geometrical interpretation of partial correlation,
28.15; Path analysis, 28.18; Sampling distributions of partial correlation and regression coefficients in the normal case, 28.21; The multiple correlation coefficient, 28.23; Geometrical interpretation of multiple correlation, 28.26; Canonical correlation, 28.27; The sample multiple correlation coefficient and its conditional distribution, 28.28; The multinormal (unconditional) case, 28.29; The moments and limiting distributions of R^2, 28.32; Unbiased estimation of R^2 in the multinormal case, 28.34; Estimation of $R^2/(1 - R^2)$, 28.36; Exercises 28.1–28.22.

29 The General Linear Model

Optimum properties of least squares, 29.5; A geometrical interpretation, 29.7; Estimation of the variance, 29.8; Ridge regression, 29.9; The singular case, 29.10; LS with known linear constraints, 29.12; Extension of a linear model to include further parameters, 29.13; A more general linear model, 29.15; Ordered LS estimation of location and scale parameters, 29.16; Restricted maximum likelihood, 29.19; The canonical form of the general linear model, 29.20; Tests of hypotheses, 29.22; The non-central F distribution, 29.26; The power function of the LR test, 29.28; Approximation to the power function of the LR test, 29.29; The non-central t distribution, 29.30; Optimum properties of the LR test, 29.32; Generalized linear models, 29.33; Non-linear least squares, 29.37; Exercises 29.1–29.26.

30 Fixed Effects Analysis of Variance

Subspaces and projections, 30.2; The general linear model – least squares estimators, F tests and Scheffé simultaneous confidence intervals, 30.4; Generalized inverses, 30.7; The one-way analysis of variance model, 30.8; Tukey, Dunnett, MCB and Bonferroni simultaneous confidence intervals, 30.9; Multiple comparisons, 30.13; Orthogonal designs, 30.15; Balanced two-way crossed models, 30.18; Interpreting main effects – proportional sampling, 30.20; Higher-way crossed models – Latin squares, 30.22; Symmetric two-way crossed models – Diallel cross, 30.24; Orthogonal nested models, 30.26; Non-orthogonal designs, 30.29; Unbalanced two-way models – balanced incomplete blocks, 30.31; The general twofold nested model, 30.34; The canonical form for testing the general linear hypothesis, 30.35; One-sided tests, 30.36; The case of known variance, 30.37; Sensitivity to assumptions, 30.38; Exercises 30.1–30.82.

31 Other Analysis of Variance Models

Analysis of covariance – theory, 31.2; Examples, 31.6; Further comments, 31.9; Random effects and mixed models, 31.10; The one-way random effects model, 31.12; Nested random effects and mixed models, 31.14; Crossed random effects and mixed models, 31.16; Further comments, 31.20; Repeated measures models, 31.21; Univariate repeated measures – theory, 31.22; Examples, 31.23; Covariates in repeated measures models, 31.27; Univariate repeated measures models as mixed models, 31.28; Multivariate repeated measures models, 31.29; Testing validity of repeated measures models, 31.31; Further comments, 31.32; A more general linear model, 31.33; Exercises 31.1–31.64.

32 Analysis and Diagnostics for the Linear Model

Residuals, 32.3; Tests of hypotheses, 32.4; Confidence and prediction intervals, 32.8; Conditional and unconditional inferences, 32.12; Design considerations, 32.13; Confidence regions for a regression line, 32.15; Stepwise regression, 32.23; Checking the assumptions, 32.29; Transformations to the normal linear model, 32.31; LR
tests of nested hypotheses, 32.36; The purposes of transformation, 32.37; Variance-stabilizing transformations, 32.38; Normalizing transformations, 32.41; Transformations to additivity, 32.43; Removal of transformation bias, 32.44; Bootstrap, 32.45; Multicollinearity, 32.46; Ridge regression, 32.48; Principal components regression, 32.49; Polynomial regression: orthogonal polynomials, 32.51; Equally spaced x values, 32.53; Tables of orthogonal polynomials, 32.54; Distributed lags, 32.56; Heteroscedasticity, 32.58; Autocorrelation, 32.61; Diagnostics, 32.65; Leverage, 32.66; Influence, 32.68; Influence and transformations, 32.70; Outliers and robustness, 32.71; Added variable plots, 32.75; Calibration, 32.76; Missing values, 32.79; Measurement errors, 32.81; Instrumental variables, 32.82; Nonlinear regression, 32.84; Exercises 32.1–32.33.

Appendix Tables
References
Index of Examples in Text
Author Index
Subject Index