Biological Specimen Preparation for Transmission Electron Microscopy

Audrey M. Glauert
Clare Hall
University of Cambridge
U.K.

Peter R. Lewis
Physiological Laboratory
University of Cambridge
U.K.
Contents

Editor's preface to the series vii
Authors' preface and acknowledgements ix

1 An introduction to fixation and embedding procedures and their safe use in the laboratory 1
1.1 The scope of this book 1
1.2 Criteria for the good preservation of ultrastructure 4
1.3 Artefacts in electron micrographs 6
1.4 Safety precautions in the electron microscope laboratory 9
 1.4.1 General safety precautions 9
 1.4.2 Hazards from electrical equipment and fire 10
 1.4.3 Safe procedures for handling animals 11
 1.4.4 Dangers from sharp implements 12
 1.4.5 Safe procedures with chemicals 12
 1.4.5a Labelling for toxicity and flammability 12
 1.4.5b The safe handling of chemicals 15
 1.4.5c Storage and disposal of chemicals 16
 1.4.6 Hazards with liquid nitrogen 17
 1.4.7 First-aid in the laboratory 18

2 Fixatives 21
2.1 An introduction to fixation 21
 2.1.1 The development of fixatives for electron microscopy 22
 2.1.2 The chemistry and physics of fixation 24
 2.1.3 The penetration of fixatives 25
 2.1.4 The choice of aldehyde fixative 27
2.2 The safe preparation and disposal of fixatives 29
 2.2.1 Preparation of a fixative 30
 2.2.2 Disposal of fixatives 32
 2.2.3 Spillages 33
2.3 Vehicles for fixatives 33
 2.3.1 The choice of buffer 34
 2.3.2 Osmolarity 35
 2.3.3 The preparation of buffers 37

2.4 Glutaraldehyde fixatives 38
 2.4.1 The effects of glutaraldehyde on cells and tissues 40
 2.4.1a Reactions of glutaraldehyde with proteins 40
 2.4.1b Reactions of glutaraldehyde with other cell constituents 44
 2.4.1c The effects of the osmolarity of glutaraldehyde fixatives 44
 2.4.2 The preparation of glutaraldehyde fixatives 45

2.5 Formaldehyde fixatives 46
 2.5.1 The effects of formaldehyde on cells and tissues 47
 2.5.2 The preparation of formaldehyde fixatives 50
 2.5.2a A phosphate-buffered formaldehyde fixative 51
 2.5.2b A cacodylate-buffered formaldehyde fixative 51
 2.5.2c A PIPES-buffered formaldehyde fixative 52
 2.5.3 Glutaraldehyde–formaldehyde fixatives 52
 2.5.3a The preparation of a glutaraldehyde–formaldehyde fixative 53
 2.5.4 Additives to aldehyde fixatives 53

2.6 Osmium tetroxide fixatives 55
 2.6.1 The effects of osmium tetroxide fixation 56
 2.6.2 Routine post-fixation with osmium tetroxide 58
 2.6.3 Osmium tetroxide and complex cyanides 60
 2.6.4 Amine complexes with osmium 61
 2.6.5 Other osmium-containing fixatives 62

2.7 Uranyl acetate 63

2.8 Other fixatives 66
 2.8.1 Acrolein 66
 2.8.2 Tannic acid 67
 2.8.3 Potassium dichromate 70
 2.8.4 Other miscellaneous fixatives 71

3 Fixation methods 77
 3.1 The choice of fixation method 77
 3.2 The choice of fixatives 81
3.12 Fixation methods for specialized techniques
3.12.1 Fixation for general cytochemical techniques 120
3.12.2 Fixation for enzyme cytochemical techniques 123
3.12.3 Fixation for immunocytochemical techniques 125

4 Dehydration methods
4.1 Chemical and morphological effects of dehydration 129
4.1.1 Dimensional changes during dehydration 130
4.1.2 The retention of lipids 131
4.2 Safety procedures 134
4.3 Dehydrating agents and intermediate solvents 134
4.3.1 The standard dehydrating agents and intermediate solvents 134
4.3.2 Alternative dehydrating agents and intermediate solvents 135
4.4 Dehydration schedules 136
4.4.1 A standard dehydration schedule 137
4.4.2 Alternative dehydration schedules 138
4.4.3 Rapid dehydration 139
4.4.4 Partial dehydration 140
4.5 Dehydration by freeze-substitution 142
4.5.1 Solvents for freeze-substitution 142
4.5.2 Fixatives for freeze-substitution 143
4.5.3 The freeze-substitution procedure 144

5 Embedding methods
5.1 The attributes of embedding media 147
5.1.1 Toxicity 147
5.1.2 Availability 149
5.1.3 Uniformity of infiltration 149
5.1.4 Interactions with the specimen 150
5.1.5 Uniformity of hardening 151
5.1.6 Ease of sectioning 152
5.1.7 Section staining 152
5.1.8 Stability in the electron beam 153
5.2 The safe handling of embedding media 154
5.3 Embedding procedures 155
 5.3.1 Infiltration of embedding media 156
 5.3.1a Standard infiltration methods 156
 5.3.1b Continuous infiltration 156
 5.3.1c Vacuum infiltration 157
 5.3.2 Embedding moulds 158
 5.3.3 Curing and polymerization of embedding media 161
 5.3.3a Embedding in capsules 161
 5.3.3b Flat embedding 163
 5.3.3c Methods of curing and polymerization 164
 5.3.3d Ultra-violet and microwave irradiation 164
 5.4 Embedding methods for cell monolayers 165
 5.4.1 Removal of hardened blocks from the substrate 166
 5.4.2 Monolayer embedded and sectioned on the substrate 169

6 Embedding in epoxy resins 175
 6.1 The components of epoxy resin embedding media 175
 6.1.1 Epoxy resins 176
 6.1.2 Hardeners for epoxy resins 179
 6.1.3 Accelerators for epoxy resins 181
 6.1.4 Additives for epoxy resin embedding media 182
 6.1.4a Plasticizers 183
 6.1.4b Reactive flexibilizers 183
 6.1.5 The anhydride:epoxide ratio 186
 6.1.6 Curing temperatures for epoxy resins 187
 6.2 Epoxy resin embedding media 188
 6.2.1 The development of epoxy resin embedding media 188
 6.2.2 The aromatic Araldite epoxy resins 189
 6.2.3 Araldite embedding media 191
 6.2.3a The standard embedding media 191
 6.2.3b Adjustment of the content of dibutyl phthalate 192
 6.2.3c Adjustment of the hardness of the final block 192
 6.2.4 Alternative aromatic epoxy resins 193
 6.2.4a DGEBA resins containing BGE 193
 6.2.4b DGEBA resins containing BDE 194
 6.2.5 The aliphatic 'Epon' epoxy resins 195
6.2.6 'Epon' embedding media
6.2.6a Luft's A and B mix 'Epon' embedding medium 196
6.2.6b Single-mix 'Epon' embedding media 197
6.2.6c 'Epon' embedding media with lower viscosities 198
6.2.7 Araldite/'Epon' embedding media 199
6.2.8 Storage and mixing of the components of the media 200
6.2.8a Preparation of epoxy resin embedding media 201
6.2.8b Storage of epoxy resin embedding media 202
6.2.9 Embedding methods for epoxy resins 202
6.2.9a The standard procedure for infiltration with epoxy resins 202
6.2.9b Modified infiltration procedures 204
6.2.9c Infiltration after dehydration by freeze-substitution 206
6.2.9d The curing of epoxy resins 207
6.2.9e Rapid infiltration and curing of epoxy resins 208
6.3 Low viscosity epoxy resin embedding media 209
6.3.1 Spurr's embedding medium 210
6.3.1a Preparation of Spurr's embedding medium 211
6.3.1b Infiltration schedules for Spurr's medium 212
6.3.1c Embedding procedure for Spurr's medium 214
6.3.2 Ultra-low viscosity epoxy resin embedding media 215
6.3.3 Quetol 651 epoxy resin embedding medium 215
6.3.4 Properties of low viscosity epoxy resin embedding media 217
6.4 Water-miscible epoxy resins 218
6.4.1 Aquon 219
6.4.2 Durcupan 219
6.4.2a Dehydration and embedding in Durcupan 219
6.4.2b Conventional embedding after Durcupan dehydration 220
6.4.3 Aquembed 221

7 Embedding in acrylic resins 225
7.1 Acrylic resins for electron microscopy 225
7.1.1 The properties of acrylic resins 225
7.1.2 The polymerization of acrylic resins 227
7.1.3 Stability in the electron beam 228
7.1.4 The development of acrylic resin embedding media 228
7.1.5 Embedding methods for acrylic resins
7.1.5a Safe handling of acrylic resins
7.1.5b Storage and mixing of acrylic resins
7.1.5c Infiltration and polymerization of acrylic resins

7.2 Glycol methacrylate for light microscopy
7.2.1 Glycol methacrylate
7.2.2 Polymerization of glycol methacrylate
7.2.3 Embedding in glycol methacrylate for light microscopy
7.2.4 Embedding in glycol methacrylate at low temperatures

7.3 The London resins, LR White and LR Gold
7.3.1 LR White
7.3.2 ‘Uncatalysed’ LR White
7.3.3 Processing schedules for LR White
7.3.3a Polymerization by heat
7.3.3b Polymerization at 0°C
7.3.3c Polymerization by UV irradiation below 0°C
7.3.4 LR Gold

8 The Lowicryl resins and embedding at low temperatures
8.1 The advantages of low temperature embedding
8.2 The Lowicryl resins
8.3 The polar Lowicryl resins
8.3.1 Lowicryl K4M
8.3.2 Lowicryl K11M
8.4 The non-polar Lowicryl resins
8.4.1 Lowicryl HM20
8.4.2 Lowicryl HM23
8.5 The preparation of Lowicryl embedding media
8.6 Apparatus for dehydration and embedding at low temperatures
8.6.1 Cooling baths and cold cabinets
8.6.2 Commercial units

8.7 Infiltration schedules for Lowicryl resins
8.7.1 Infiltration after dehydration by the PLT method
8.7.2 Infiltration after dehydration by freeze-substitution
8.7.3 Infiltration after freeze-drying
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>Polymerization of Lowicryl resins at low temperatures</td>
<td>269</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Requirements for polymerization at low temperatures</td>
<td>269</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Procedures for polymerization at low temperatures</td>
<td>271</td>
</tr>
<tr>
<td>9</td>
<td>Other embedding media</td>
<td>279</td>
</tr>
<tr>
<td>9.1</td>
<td>Polyester resins</td>
<td>279</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Vestopal W embedding medium</td>
<td>279</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Embedding schedules for Vestopal W</td>
<td>280</td>
</tr>
<tr>
<td>9.2</td>
<td>Melamine resins</td>
<td>281</td>
</tr>
<tr>
<td>9.2.1</td>
<td>The properties of melamine resins</td>
<td>281</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Nanoplast FB 101 embedding medium</td>
<td>283</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Embedding schedule for Nanoplast FB 101</td>
<td>285</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Low temperature embedding in Nanoplast</td>
<td>286</td>
</tr>
<tr>
<td>9.3</td>
<td>Water-miscible embedding media</td>
<td>287</td>
</tr>
<tr>
<td>9.4</td>
<td>Polyethylene glycol and other reversible embedding media</td>
<td>288</td>
</tr>
<tr>
<td>10</td>
<td>Processing schedules</td>
<td>293</td>
</tr>
<tr>
<td>10.1</td>
<td>The standard schedule for ultrastructural studies</td>
<td>293</td>
</tr>
<tr>
<td>10.2</td>
<td>Schedules for general cytochemistry</td>
<td>294</td>
</tr>
<tr>
<td>10.2.1</td>
<td>A schedule for staining sections with colloidal iron</td>
<td>295</td>
</tr>
<tr>
<td>10.2.2</td>
<td>A schedule for staining tissues with colloidal thorium dioxide</td>
<td>295</td>
</tr>
<tr>
<td>10.2.3</td>
<td>A specific staining schedule for biogenic amines</td>
<td>297</td>
</tr>
<tr>
<td>10.3</td>
<td>Schedules for enzyme cytochemistry</td>
<td>297</td>
</tr>
<tr>
<td>10.3.1</td>
<td>A routine schedule for the localization of enzymes</td>
<td>298</td>
</tr>
<tr>
<td>10.3.2</td>
<td>A specific schedule for 5'-nucleotidase</td>
<td>299</td>
</tr>
<tr>
<td>10.4</td>
<td>Schedules for immunocytochemistry</td>
<td>300</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Pre-embedding immunolabelling</td>
<td>301</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Post-embedding immunolabelling</td>
<td>301</td>
</tr>
<tr>
<td>10.4.2a</td>
<td>Immunolabelling of acrylic resin sections</td>
<td>302</td>
</tr>
<tr>
<td>10.4.2b</td>
<td>Immunolabelling of epoxy resin sections</td>
<td>303</td>
</tr>
<tr>
<td>10.5</td>
<td>Schedules for rapid processing</td>
<td>303</td>
</tr>
<tr>
<td>10.5.1</td>
<td>A rapid processing schedule for small specimens</td>
<td>303</td>
</tr>
<tr>
<td>10.5.2</td>
<td>A schedule for rapid processing of biopsies</td>
<td>305</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Rapid processing by microwave irradiation</td>
<td>305</td>
</tr>
</tbody>
</table>
10.6 Schedules for reprocessing wax-embedded material 307

10.6.1 A schedule for removal of paraffin wax with xylene 307
10.6.2 A schedule for removal of paraffin wax with Inhibisol 307

10.7 A schedule for the decalcification of mineralized tissue 308

10.8 Schedules for embedding hard materials 309

10.8.1 A schedule for embedding hard biological specimens 309
10.8.2 A schedule for embedding hard materials in Nanoplast 310

Appendix: List of suppliers 313

Subject index 319