Volcanic Plumes

R. S. J. SPARKS
University of Bristol, UK

M. I. BURSIK
State University of New York, USA

S. N. CAREY
University of Rhode Island, USA

J. S. GILBERT
Lancaster University, UK

L. S. GLAZE
NASA/Goddard Space Flight Center, USA

H. SIGURDSSON
University of Rhode Island, USA

A. W. WOODS
University of Bristol, UK
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xv</td>
</tr>
</tbody>
</table>

Chapter 1 Explosive Volcanism and the Generation of Volcanic Plumes

1.1 Introduction | 1
1.2 Composition and volatile content of magma | 2
1.3 Physical properties of magma | 6
1.4 Causes of explosive volcanism | 10
1.4.1 Degassing of juvenile volatiles | 10
1.4.2 Interaction of magma with external water | 13
1.5 Volcanic ejecta | 17
1.6 Distribution of explosive volcanism | 19
1.7 Styles of explosive volcanism and plume generation | 22
1.7.1 Plinian eruptions | 24
1.7.2 Ignimbrite-forming eruptions | 26
1.7.3 Strombolian eruptions | 28
1.7.4 Vulcanian eruptions | 29
1.7.5 Surtseyan eruptions | 31
1.7.6 Hawaiian eruptions | 31
1.7.7 Classification limitations | 33
1.8 Magnitude and intensity of explosive volcanism | 33
1.9 Frequency of explosive eruptions | 34
1.10 Summary | 35

Chapter 2 General Fluid Dynamical Principles

2.1 Introduction | 39
2.2 Jets | 41
2.3 Maintained buoyant plumes | 42
2.4 Linearly mixing plumes | 45
2.5 The uniform environment | 46
2.6 The stratified environment | 49
2.7 Time-dependent buoyancy fluxes | 52
2.8 Discrete thermals | 53
2.9 Starting plumes | 56
2.10 Line sources 56
2.11 Negatively buoyant jets 57
2.12 Plumes with non-linear density mixing properties 58
2.13 Summary 61

Chapter 3 Source Conditions in Explosive Volcanic Eruptions 63
3.1 Introduction 64
3.2 Steady equilibrium ascent and eruption of magma 65
 3.2.1 Dynamical model of conduit flow 67
 3.2.2 Dynamic evolution of the flow 68
 3.2.3 Conduit flow 70
 3.2.4 Decompression into flared vents and craters 71
 3.2.5 Pressure adjustment beyond the crater 74
3.3 Caveats and complications 77
 3.3.1 Kinetic effects of gas exsolution 77
 3.3.2 Fragmentation 77
 3.3.3 Controls on initial plume temperature 78
 3.3.4 Unsteady and heterogeneous conduit flow 79
 3.3.5 Degassing during magma ascent: the lava problem 82
3.4 Transient Vulcanian-style eruptions 83
3.5 Summary 87

Chapter 4 Eruption Column Models 88
4.1 Introduction 89
4.2 Density variations in erupting mixtures 90
4.3 Fine-grained eruption columns 92
 4.3.1 Gas thrust region 95
 4.3.2 Convective region 96
 4.3.3 The atmosphere 96
 4.3.4 The motion of dry, dusty eruption columns 97
 4.3.5 Fountain collapse 99
 4.3.6 Column height 100
4.4 Particle fallout and thermal disequilibrium 101
4.5 Atmospheric controls on column behaviour 105
 4.5.1 Variations in the environmental stratification 105
 4.5.2 Wind-blown plumes 106
 4.5.3 Moist convection in eruption columns 106
4.6 Short-lived eruptions 110
4.7 Starting plumes 112
4.8 Eruption columns associated with pyroclastic flows 112
4.9 Effects of particles on lower column dynamics 113
4.10 Multi-phase numerical models of eruption columns 114
4.11 Summary 116
Chapter 5 Observations and Interpretation of Volcanic Plumes

5.1 Introduction 117
5.2 Column height 118
5.3 Gas thrust region 122
5.4 Studies of starting plumes 124
 5.4.1 Starting plume model 124
 5.4.2 April 22, 1979 eruption of Soufrière, St Vincent 126
 5.4.3 February 20, 1990 Lascar eruption 130
 5.4.4 October 17, 1980 eruption of Mount St Helens 135
 5.4.5 1947 Hekla Plinian eruption 137
5.5 Instantaneous explosions 138
5.6 Summary 139

Chapter 6 Pyroclastic Flows 141

6.1 Introduction 141
6.2 The nature of pyroclastic flows 142
 6.2.1 Flows and surges 142
 6.2.2 Observations 145
 6.2.3 Range and aspect ratio of deposits 145
 6.2.4 Constituents of pyroclastic flows 149
 6.2.5 Dangers and hazards 149
6.3 Generation of pyroclastic flows by fountain collapse 149
 6.3.1 Observations of eruptions 150
 6.3.2 Experimental studies 155
 6.3.3 Fluid dynamical models 158
 6.3.4 Supercomputer models 166
 6.3.5 Influence of flow inhomogeneities 168
 6.3.6 Conclusions on fountain collapse 171
6.4 Other forms of column instability and flow formation 171
 6.4.1 Transitional behaviour 171
 6.4.2 Collapse of column margins 173
 6.4.3 Coarse ejecta fallout 175
 6.4.4 Asymmetric collapse 176
 6.4.5 Whole column collapse 176
 6.4.6 Vent edge and decompression effects 177
 6.4.7 Geological observations 177
6.5 Pyroclastic flows generated from lava domes 177
6.6 Summary 178

Chapter 7 Co-ignimbrite Plumes 180

7.1 Introduction 180
7.2 The nature of co-ignimbrite plumes 180
7.3 Mechanisms of plume formation 187
 7.3.1 Flow-fed plumes: fluidization 187
 7.3.2 Flow-fed plumes: boundary shear mixing 189
7.3.3 Flow-fed plumes: non-linear mixing effects 189
7.3.4 Buoyant lift-off 192
7.3.5 Fountain-fed plumes 197
7.4 August 7, 1980 Mount St Helens flow: a case study 198
7.5 Theoretical models 201
7.5.1 A steady model 201
7.5.2 Comparison of steady model with observations 203
7.5.3 A thermal model 204
7.5.4 Comparisons of thermal model with observations 206
7.6 Summary 208

Chapter 8 Geothermal and Hydrovolcanic Plumes 209
8.1 Introduction 210
8.2 Geothermal systems 213
8.2.1 Steady venting 213
8.2.2 Geysers 215
8.3 Geothermal and fumarolic vapour plumes 217
8.3.1 Vapour plume model 218
8.3.2 Results of model calculations 219
8.4 Phreatic eruptions 224
8.5 Phreatomagmatic eruptions 225
8.5.1 Explosive energy and fragmentation 226
8.5.2 Properties of erupting water–magma mixtures 227
8.6 Submarine eruptions 230
8.7 Summary 232

Chapter 9 Hydrothermal Plumes 233
9.1 Introduction 234
9.2 Generation of hydrothermal plumes 234
9.3 Hydrothermal vents 237
9.3.1 Style of venting 237
9.3.2 Distribution of venting sites 239
9.4 Observations of sea-floor venting 241
9.4.1 Submersibles 241
9.4.2 Remote surveys of plume dispersal 241
9.4.3 Megaplumes 242
9.4.4 Bubble plumes 243
9.5 Particles in hydrothermal plumes 244
9.6 Dynamics and thermodynamics of hydrothermal plumes 244
9.6.1 Initial conditions 246
9.6.2 Plume models 247
9.6.3 Diffuse plumes 248
9.7 Properties of the plume and neutrally buoyant intrusion 251
9.7.1 Effects of abyssal cross-flows 252
CONTENTS

9.8 Fallout of particles from hydrothermal plumes 252
9.9 Summary 254

Chapter 10 Basaltic Eruptions and Fire Fountains 256

10.1 Introduction 257
10.2 Degassing phenomena in basaltic eruptions 258
 10.2.1 Gas content 259
 10.2.2 Viscosity 259
 10.2.3 Vent geometry 260
10.3 Hawaiian fire fountains and Strombolian eruptions 260
 10.3.1 Fire fountain activity 264
 10.3.2 Height of rise of fire fountains 264
 10.3.3 Variations in eruptive activity 266
 10.3.4 Strombolian activity 266
10.4 The plumes above fire fountains 267
 10.4.1 Height of rise for a line plume 268
 10.4.2 A dynamical model of a Hawaiian plume 270
 10.4.3 Comparison with observations 275
10.5 Basaltic Plinian and ignimbrite eruptions 276
10.6 Summary 276

Chapter 11 Atmospheric Dispersal 278

11.1 Introduction 279
11.2 Dynamics of umbrella clouds 280
 11.2.1 Models of umbrella cloud growth 280
 11.2.2 Entrainment 284
11.3 Plume–wind interaction 284
 11.3.1 Strong plumes 285
 11.3.2 Weak plumes 288
 11.3.3 Topographic effects 294
 11.3.4 Regional and global transport 294
11.4 Comparison with observations 298
 11.4.1 Umbrella clouds 298
 11.4.2 Downwind spreading and plume dispersal patterns 300
 11.4.3 Examples of hemispheric to global transport 302
11.5 Summary 306

Chapter 12 Remote Sensing of Volcanic Plumes 307

12.1 Introduction 307
12.2 Principles of electromagnetic theory 308
12.3 Electromagnetic remote sensing basics 311
 12.3.1 Spectral region and resolution 312
 12.3.2 Spatial resolution 314
 12.3.3 Observation opportunities 314
12.4 Determination of plume properties
 12.4.1 Plume height 321
 12.4.2 Plume temperature 324
 12.4.3 Output of SO₂ 327
12.5 Satellite plume differentiation and eruption monitoring 331
 12.5.1 Volcanic plume distinction 331
 12.5.2 Plume dispersal observations from satellite 333
12.6 Monitoring of electric potential gradients and lightning generated by plumes 337
 12.6.1 Background 337
 12.6.2 Field measurements at volcanoes 339
12.7 Acoustic measurements of volcanic plumes 343
 12.7.1 Principles 343
 12.7.2 Measurements at Stromboli 344
12.8 Summary 345

Chapter 13 Tephra Fall Deposits 346
13.1 Introduction 346
13.2 Ejecta components 347
13.3 Petrology of ejecta 350
13.4 General description of fallout 353
13.5 Characteristics of fall deposits 356
 13.5.1 Thickness 356
 13.5.2 Volumes 365
 13.5.3 Particle size 366
13.6 Classification of fall deposits 369
13.7 Co-ignimbrite fall deposits 372
13.8 Tephrochronology 373
 13.8.1 Correlation and dating 374
 13.8.2 Archaeological applications 375
 13.8.3 Marine tephrochronology 376
13.9 Summary 378

Chapter 14 Sedimentation from Volcanic Plumes 380
14.1 Introduction 381
14.2 Particle settling 382
 14.2.1 The influence of particle shape 385
 14.2.2 Variation of fall velocity with altitude 386
14.3 Ballistic particles 386
14.4 Sedimentation from turbulent suspensions 390
 14.4.1 Basic principles 390
 14.4.2 Radial gravity currents 391
 14.4.3 Plumes and jets 391
 14.4.4 Backflow 393
 14.4.5 Re-entrainment 393
CONTENTS

14.4.6 Effects of wind 395
14.4.7 Atmospheric advection/diffusion models 396
14.5 Observations 397
14.5.1 Laboratory experiments 397
14.5.2 Volcanic deposits 398
14.5.3 Re-entrainment 403
14.6 Summary 403

Chapter 15 Quantitative Interpretation of Tephra Fall Deposits 404
15.1 Introduction 404
15.2 Maximum grain size data 405
15.2.1 Theoretical considerations 407
15.2.2 Maximum clast method 412
15.2.3 Evaluation of maximum clast method 416
15.2.4 Application to Plinian eruptions 418
15.3 Application of plume sedimentation models 422
15.3.1 Thickness variations 422
15.3.2 Particle size variations 426
15.3.3 Emplacement temperature and welding 428
15.4 Summary 431

Chapter 16 Particle Aggregation in Plumes 432
16.1 Introduction 432
16.2 Geological observations 433
16.2.1 Anomalous deposit thicknesses 433
16.2.2 Particle size distributions 436
16.2.3 Aggregates 438
16.3 Aggregation mechanisms 444
16.3.1 Collision mechanisms 446
16.3.2 Binding mechanisms 448
16.4 Experiments and theory 449
16.4.1 Laboratory simulation 450
16.4.2 Theoretical models of aggregation 458
16.5 Summary 461

Chapter 17 Environmental Hazards 463
17.1 Introduction 463
17.2 Health hazards to humans 464
17.3 Hazards to animals 468
17.4 Effect on vegetation 471
17.5 Property damage 473
17.6 Disruption of community infrastructure 476
17.7 Aviation hazards 480
17.7.1 Disruptions of airport operations 480
17.7.2 Plume encounters in flight 481
17.7.3 Effect of ash and aerosols on aircraft 481
17.7.4 Mitigation 488
17.8 Summary and lessons learned 490

Chapter 18 Atmospheric Effects 493
18.1 Introduction 493
18.2 Early research 494
18.3 Physical principles 496
18.4 Sedimentation and dispersal of volcanic aerosols 499
18.5 The Pinatubo 1991 eruption 503
 18.5.1 Sulphur dioxide emission 506
 18.5.2 Sulphur dioxide decay and sulphate aerosol evolution 507
 18.5.3 Stratospheric warming 516
 18.5.4 Tropospheric and surface cooling 516
 18.5.5 Ozone perturbation 518
 18.5.6 Depletion of nitrogen dioxide 521
18.6 Volcanologic parameters 522
18.7 Summary 524

References 526

Index 560