River Ecology and Management
Lessons from the Pacific Coastal Ecoregion

Sylvia Kantor
Associate and Managing Editor

With 202 Illustrations
Contents

Preface .. v
Contributors ... xxxi

1 River Ecology and Management in
the Pacific Coastal Ecoregion 1
Robert J. Naiman and Robert E. Bilby

Defining Streams and Rivers 1
A Brief History of Stream Ecology 1
Recent Advances in Stream Ecology 2
 Rivers as Integrators of Environmental Conditions 3
 Environmental Status of Streams and Rivers 4
Providing a Sense of Place 5
 The Pacific Northwest 5
 The Pacific Coastal Ecoregion 7
Science and Management 8

Part I The Physical Environment

2 Channel Processes, Classification, and Response 13
David R. Montgomery and John M. Buffington

Overview ... 13
Introduction ... 13
Channel Processes 14
Conceptual Models of Channel Response 16
Examples of Channel Change 17
 Sediment Supply 17
 Discharge ... 19
 Dams ... 19
Geomorphological Channel Classification 20
 Past Classifications 20
 Hierarchical Channel Classification 21
Channel Disturbance and Response Potential 31
 Reach-Level Response 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment-Level Response</td>
<td>32</td>
</tr>
<tr>
<td>External Influences</td>
<td>32</td>
</tr>
<tr>
<td>Debris Flow Disturbance</td>
<td>34</td>
</tr>
<tr>
<td>Applications for Ecosystem Analysis</td>
<td>36</td>
</tr>
<tr>
<td>3 Hydrology</td>
<td>43</td>
</tr>
<tr>
<td>Robert R. Ziemer and Thomas E. Lisle</td>
<td></td>
</tr>
<tr>
<td>Overview</td>
<td>43</td>
</tr>
<tr>
<td>Introduction</td>
<td>43</td>
</tr>
<tr>
<td>Hydrology of the Pacific Coastal Ecoregion</td>
<td>44</td>
</tr>
<tr>
<td>Runoff Processes</td>
<td>47</td>
</tr>
<tr>
<td>Hillslope Runoff</td>
<td>48</td>
</tr>
<tr>
<td>Effects of Land-Use Practices on Runoff</td>
<td>56</td>
</tr>
<tr>
<td>Peak Flows and Floods</td>
<td>56</td>
</tr>
<tr>
<td>Hydrologic Recovery from Land-Use Impacts</td>
<td>62</td>
</tr>
<tr>
<td>4 Stream Quality</td>
<td>69</td>
</tr>
<tr>
<td>Eugene B. Welch, Jean M. Jacoby, and Christopher W. May</td>
<td></td>
</tr>
<tr>
<td>Overview</td>
<td>69</td>
</tr>
<tr>
<td>Introduction</td>
<td>70</td>
</tr>
<tr>
<td>Acid Neutralizing Capacity, pH, and Hardness</td>
<td>73</td>
</tr>
<tr>
<td>Cations, Anions, and Conductivity</td>
<td>74</td>
</tr>
<tr>
<td>Nutrients</td>
<td>75</td>
</tr>
<tr>
<td>Temperature</td>
<td>77</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand and Dissolved Oxygen</td>
<td>78</td>
</tr>
<tr>
<td>Metals</td>
<td>81</td>
</tr>
<tr>
<td>Suspended Solids</td>
<td>83</td>
</tr>
<tr>
<td>Water Quality and Nuisance Algae (Periphyton)</td>
<td>84</td>
</tr>
<tr>
<td>Nuisance Periphyton</td>
<td>85</td>
</tr>
<tr>
<td>Part II The Biotic Environment</td>
<td></td>
</tr>
<tr>
<td>5 Biotic Stream Classification</td>
<td>97</td>
</tr>
<tr>
<td>Robert J. Naiman</td>
<td></td>
</tr>
<tr>
<td>Overview</td>
<td>97</td>
</tr>
<tr>
<td>Introduction</td>
<td>98</td>
</tr>
<tr>
<td>Historical Concepts</td>
<td>98</td>
</tr>
<tr>
<td>Recent Concepts</td>
<td>99</td>
</tr>
<tr>
<td>Classification of Physical Watershed Features (a Summary)</td>
<td>100</td>
</tr>
<tr>
<td>Single-Scale Classification</td>
<td>101</td>
</tr>
<tr>
<td>Hierarchical Classification</td>
<td>101</td>
</tr>
<tr>
<td>Classification Coupling Biological and Physical Features</td>
<td>111</td>
</tr>
<tr>
<td>Vertebrate Community Classification</td>
<td>111</td>
</tr>
<tr>
<td>Invertebrate Community Classification</td>
<td>112</td>
</tr>
<tr>
<td>Plant Classification</td>
<td>113</td>
</tr>
<tr>
<td>An Evaluation of the Biological–Physical Approach</td>
<td>114</td>
</tr>
<tr>
<td>Management Based on Stream Classification</td>
<td>114</td>
</tr>
</tbody>
</table>
Contents

6 Microorganisms and Organic Matter Decomposition 120
Keller F. Suberkropp

Overview ... 120
Introduction .. 120
Heterotrophic Microorganisms 122
Plant Litter Decomposition 127
Models for Plant Litter Decomposition 131
Comparison of Fungal and Bacterial Activity 132
Fungi-Shredder Interactions 133
Factors Affecting Rates of Plant Litter Breakdown 134
Wood .. 135
Dissolved Organic Matter 137
Metabolism of DOM and the Microbial Loop 137

7 Primary Production ... 144
Michael L. Murphy

Overview ... 144
Introduction .. 144
Forms and Typical Species 145
Benthic Algae .. 145
Macrophytes .. 148
Phytoplankton .. 149
The Primary Production Process 149
Limiting Factors ... 150
Energy Flow .. 153
Distribution of Primary Production in Watersheds 158
Potential Response to Watershed Uses 160

8 Stream Macroinvertebrate Communities 169
Anne E. Hershey and Gary A. Lamberti

Overview ... 169
Introduction .. 169
Species Assemblages .. 170
Macrobenthic Taxonomic Diversity 170
Macroinvertebrate Life Histories 172
Relationship of Diversity to Physical Environment 175
Role of Disturbance .. 176
Functional Feeding Groups and the River Continuum Concept 179
Invertebrate-Mediated Processes 183
Detritivory .. 183
Grazing .. 184
Predator-Prey Interactions 185
Macroinvertebrate Drift 187
Secondary Production ... 189
Macroinvertebrates in Stream Food Webs 189
Impact of Spawning Salmon on Stream 189
Macroinvertebrates .. 192
Effects of Land Use on Community Dynamics 192
9 Fish Communities 200

Gordon H. Reeves, Peter A. Bisson, and Jeffrey M. Dambacher

Overview ... 200
Introduction 200
Regional Diversity 201
 Anadromous Life Histories 205
 Population Variability 206
Watershed Scale Patterns of Diversity 208
 Ecological Rules 208
 Physical and Biological Processes 209
Reach Scale Diversity 214
Habitat Unit Patterns of Diversity 218
Human Impacts on Fish 220
 Differential Response of Species 222
 Disturbance 224
 Future Management Directions 226

10 Riparian Wildlife 235

Kathryn A. Kelsey and Steven D. West

Overview ... 235
Introduction 235
Distribution and Abundance of Riparian Wildlife Species 236
 Riparian Obligates 236
 Riparian Generalists 241
 Exotic Species 242
Effects of Riparian Conditions and Processes on Wildlife 243
 Landscape Processes 243
 Local Processes 245
Management Effects on Riparian Wildlife Communities 250
 Riparian Wildlife Management Alternatives 252

Part III Ecosystem Processes

11 Dynamic Landscape Systems 261

Lee E. Benda, Daniel J. Miller, Thomas Dunne, Gordon H. Reeves, and James K. Agee

Overview ... 261
Introduction 261
Components of Dynamic Landscape Systems 263
 Climate 263
 Topography 268
 Hierarchical Patterns of Channel Networks 272
 Basin History 273
Dynamic Landscape Systems: Populations of Elements and Time 274
 Temporal Sequencing of Storms, Fires, and Floods, and Dynamic Channel Behavior 274
 Effect of Hierarchical Networks and Spatial Scale on System Properties 277
Aquatic Biology at the Landscape Systems Level 281
Applications to Watershed Science and Management 283
A Field Perspective 283
The Problem of Cumulative Effects, Natural Disturbance, and Habitat Diversity 284

12 Riparian Forests 289
Robert J. Naiman, Kevin L. Fetherston, Steven J. McKay, and Jiquan Chen
Overview 289
Introduction 290
The Physical Setting and Geomorphic Context 292
Valley Morphology 294
Hillslope Processes 294
Fluvial Processes 296
Soil Processes 296
Large Woody Debris 296
Riparian Plant Adaptations 297
Morphological and Physiological Adaptations 299
Reproductive Strategies 299
Growth Dynamics 301
Spatial Patterns of Riparian Forests: A Mosaic 302
Disturbance 302
Successional Processes 304
Case Studies 304
Riparian Forests and Ecosystem Functions 310
Riparian Forest Microclimate 310
Riparian Plant Diversity 311
Riparian Forests and Land-Use Change 311
River Regulation 311
Forest Practices 317
Lessons for Management 318

13 Function and Distribution of Large Woody Debris 324
Robert E. Bilby and Peter A. Bisson
Overview 324
Introduction 324
Abundance and Distribution of LWD in Channel Networks 325
Processes Controlling Input and Output of LWD 327
LWD Function in Stream Ecosystems 331
Influence of Land Use on LWD 338

14 Nutrient Cycles and Responses to Disturbance 347
Michael E. McClain, Robert E. Bilby, and Frank J. Triska
Overview 347
Introduction 348
The Basics of Nitrogen, Phosphorus, and Sulfur Cycling 349
Nutrient Spiraling 349
Natural Forms, Distributions, and Transformations 351
Input-Output Pathways and Riverine Budgets 354
Controlling Variables in Nitrogen, Phosphorus, and Sulfur Cycling

- Hydrologic Regime .. 357
- Temperature ... 359
- Biological Community Composition 359

Responses to Disturbance

- Forest Conversion and Management 363
- Urbanization and Agriculture 367
- Fire .. 367
- Climate Change .. 367

15 Organic Matter and Trophic Dynamics

Peter A. Bisson and Robert E. Bilby

- Overview .. 373
- Introduction ... 373
- Trophic Pathways .. 377
 - Autotrophic Production 377
 - Allochthonous Organic Matter and Heterotrophic Production 379
- Organic Matter Processing 380
- Organic Matter Storage and Nutrient Spiraling 384
- Impacts of Human Activity 386
 - Human Activities and Cascading Trophic Systems 386
 - Loss of Riparian Vegetation 388
 - Loss of Salmon Carcasses 389
- Why Are Some Streams More Productive Than Others? 391

16 The Hyporheic Zone

Richard T. Edwards

- Overview .. 399
- Introduction ... 399
- Definition and Delineation 401
- Interstitial Volume and Surface Area 404
- Hydrology of Hyporheic Interactions 405
- Hyporheic Zone Distribution Patterns 408
 - Large-Scale Geologic Factors 408
 - Watershed and Valley Segment Scales 409
- Channel Reach Scale 410
- Channel Unit Scale .. 410
- Roughness Elements Scale 411
- Spatial Scales of Management Actions 411
- Temporal Scales .. 412
- Biogeochemical Processes 412
 - Transient Storage 412
 - Nitrogen Dynamics 413
 - Organic Matter Utilization and the Role of Epilithon 417
- Ecology and Structure of Hyporheic Invertebrate Communities 419
 - Controls on Community Structure 421
 - Food Sources and Trophic Structure 421
 - Epilithic Biofilms 422
 - Secondary Production 423
Contents

Implications for Management of Coastal Rivers of Washington 423

17 Biodiversity 430

Michael M. Pollock

Overview 430
Introduction 430
An Overview of Diversity in Riparian Corridors 431
General Theories of (Local) Diversity 432
Common Measures of Species Richness, Diversity, Evenness, and Turnover Rates 434
Describing Diversity at Multiple Spatial Scales 436
Natural Processes Influencing Biodiversity Patterns 438
Hydrologic Regimes 440
Herbivory 443
Productivity 444
Habitat Heterogeneity 444
Large-Scale Spatial Heterogeneity 446
Implications for Management 448

Part IV Management

18 Statistical Design and Analysis Considerations for Monitoring and Assessment 455

Loveday L. Conquest and Stephen C. Ralph

Overview 455
Introduction 456
Sampling Design 456
Sampling Approaches and Sampling Units 457
Replication 461
Reference Sites 461
The Issue of Scale 462
When n Equals One—The Argument for Case Studies 463
Choosing Parameters 464
Acquiring and Maintaining Good Data 466
Intensive and Extensive Approaches 466
Training Field Crews 466
Quality Control and Quality Assurance 467
Management of Information 467
Data Analysis 468
Parametric Procedures, Regression and Correlation, and Nonparametric Tests 468
Multivariate Procedures 470
Exploratory Data Analysis 471
Geographic Information Systems 471

19 Cumulative Watershed Effects and Watershed Analysis 476

Leslie M. Reid

Overview 476
Introduction 477
Problems in the Evaluation of Cumulative Watershed Effects .. 479
Technical Issues .. 480
Philosophical Issues .. 481
Sociocultural Issues .. 483
The Ad Hoc Approach to Cumulative Effects Evaluation 485
Standardized Methods of Cumulative Effects Analysis 488
An Index Approach: Equivalent Roaded Acres 489
A Mechanistic Impact Model: The Fish-Sediment Model 491
Professional Judgment: The California Checklist 491
Administrative Convenience Versus Technical Adequacy 492
Watershed Analysis ... 493
Limited Assessment with Prescriptions—Timber/Fish/Wildlife
Watershed Analysis ... 493
Broad Assessment Without Prescriptions—Interagency
Ecosystem Analysis .. 494
Contrasting Goals and Methods .. 496
Administrative Convenience Versus Technical Adequacy 496
Tomorrow’s Analyses .. 498

20 Rivers as Sentinels: Using the Biology of Rivers to Guide Landscape Management 502
 James R. Karr

Overview .. 502
Introduction ... 503
Rivers as Sentinels .. 503
Biological Integrity and Cumulative Effects 505
Evolution of Biological Monitoring ... 506
The Index of Biological Integrity .. 509
 Selecting IBI Metrics ... 510
 Scoring Metrics ... 513
 Integrating Multiple Metrics ... 513
What IBI Says About Streams and Watersheds 515
 Detecting the Effects of Point Source Pollution 515
 Identifying Multiple Sources of Degradation 515
 Describing Geographic Pattern and Detecting Cause 517
 Detecting Regional Variation in Human Influence 517
 Detecting Change Over Time as Human Activity Changes 517
 Evaluating Management Efforts ... 517
 Statistical Power and Precision of IBI ... 520
A Benthic IBI for the Pacific Northwest 520
Change and Risk Assessment ... 523

21 Social Organizations and Institutions .. 529
 Margaret A. Shannon

Overview .. 529
Introduction ... 530
A Drop of Water .. 531
Thinking Like Scientists and Managers 532
Key Concepts Defined .. 533
22 River Law .. 553
Robert J. Masonis and F. Lorraine Bodi

Overview .. 553
Introduction .. 553
Sources of Law ... 554
Federal and State Jurisdiction 555
Laws Regulating River Systems 555
Water Quantity (In-Stream Flows) 556
Water Quality .. 558
Land Use ... 560
Biota and Habitat—Endangered Species Act 565
New Approaches .. 566
Linking Water Quality and Water Quantity 566
Controlling Nonpoint Source Pollution 567
Improving Environmental Protection Under the Federal Power Act 567
Future Outlook ... 568

23 Economic Perspectives ... 572
Daniel Huppert and Sylvia Kantor

Overview .. 572
Introduction .. 573
Economics and Water Resources 573
Historical Perspectives ... 576
Defining and Measuring Economic Value 576
Individual Values—Compensating and Equivalent Variations .. 577
Categories of Economic Value 579
Aggregation into “Social Value” 581
Discounting and Aggregation over Time 581
Economic Benefits and Competitive Markets 582
Measuring Nonmarket Economic Values 584
The Role of Economics in Decision Making 585
Economic Impacts of Policy Decisions 585
Impact versus Benefits ... 586
Economic Assessment of Water Resources 587
Economics and the Ecology of River Management 589
Forest Practices and Salmon Fishing 590
In-Stream Flow and Recreational Values 590
Sediment from Agriculture .. 591
Part V The Future

24 Stream and Watershed Restoration 599
 Christopher A. Frissell and Stephen C. Ralph

Overview ... 599
Introduction ... 599
Defining Restoration—Scope and Scale 601
Interventions at the Microhabitat Scale 603
Large-Scale River Restoration 606
Watershed-Scale Restoration—An Example 609
Monitoring and Evaluating Restoration Projects 610
A Nested Experimental Design for Monitoring 613
Cost Accounting for Watershed Restoration 614
Watershed Restoration and Adaptive Ecosystem
Management ... 617
Elements of Successful Restoration and Monitoring 619

25 Nonprofit Organizations and
Watershed Management ... 625
 Bettina von Hagen, Spencer Beebe, Peter Schoonmaker,
 and Erin Kellogg

Overview ... 625
Introduction ... 626
Theories of Nonprofit Formation 626
The Limits of Government 627
The Hidden Costs of Profit-Seeking 629
The Emergence of Nonprofits 629
Adapting Developing World Strategies to the Pacific
Coastal Ecoregion ... 631
The Role of Nonprofits in Watershed Management 632
Social and Economic Aspects of the
Pacific Coastal Ecoregion 632
Nonprofits Building Institutional Capacity 633
Nonprofits Providing Access to Information 634
Nonprofits Restoring Degraded Watersheds 635
Nonprofits Promoting Market Incentives for
Watershed Conservation 635
The Future of Nonprofit Organizations 638

26 Watershed Management ... 642
 Robert J. Naiman, Peter A. Bisson, Robert G. Lee,
 and Monica G. Turner

Overview ... 642
Introduction ... 642
Fundamental Elements of Watershed Management 643
The Natural System: Variability in Time and Space 643
A Holistic Perspective: Persistence and Invasiveness ... 644
Connectivity and Uncertainty 645
Human Cultures and Institutions 646
Contents

Practical Approaches for Implementing Watershed Management

- Quantitative Analyses .. 646
- Accepting Risk and Addressing Uncertainty 651
- How Can Organizations Deal with Risk? 652
- Addressing Institutional Organization and the Paradox of Scale 653
- Formulating Shared Socioenvironmental Visions 654
- Public Stewardship in Watershed Management 655
- Fundamental Principles 658

Paradigms, Policies, and Prognostication about the Management of Watershed Ecosystems 662

Michael C. Healey

- Overview ... 662
- Introduction ... 663
- Why Watersheds? .. 664
- What Can and Cannot Be Known about Watershed Ecosystems? 666
- The Process of Watershed Management 667
 - The Role of Science 667
 - Values .. 669
 - Accepting Limits 671
- Achieving Goals .. 672
- Evolving Paradigms in Watershed Management 673
 - Watershed Engineering 673
 - Environmental Assessment and Mitigation 674
- Adaptive Management 675
- Looking to the Future 675
- Ecosystem Management 675
- Setting Goals for Ecosystem Management 677
- From Incrementalism to Adaptive Rationalism 678
- A New Class of Problems 679

Appendix: Reviewers ... 683

Index ... 689