Vortices in Nonlinear Fields

From Liquid Crystals to Superfluids
From Non-Equilibrium Patterns to Cosmic Strings

L. M. PISMEN

Department of Chemical Engineering
Technion–Israel Institute of Technology

CLARENDON PRESS • OXFORD
1999
CONTENTS

1 Ordered Media 1
1.1 Broken Symmetry 1
 1.1.1 Order parameter fields 1
 1.1.2 Minimal manifold 3
 1.1.3 Textures and topological defects 5
1.2 Complex Scalar Field 6
 1.2.1 Lagrangian and minimal orbit 6
 1.2.2 Phase singularity 7
 1.2.3 Static solutions 9
 1.2.4 Vortices in linear fields 11
1.3 Topological Theory of Defects 14
 1.3.1 Homotopy groups 14
 1.3.2 Computation of the fundamental group 15
 1.3.3 Higher homotopy groups 17
1.4 Energy Integral and Evolution Equations 17
 1.4.1 Energy vs. topology 17
 1.4.2 General GL Lagrangian 18
 1.4.3 Evolution equations 20
1.5 Media with Broken Rotational Symmetry 21
 1.5.1 Ferromagnets 21
 1.5.2 Uniaxial nematics 23
 1.5.3 Nematics in external fields 25
 1.5.4 Smectic C 26
 1.5.5 Biaxial nematics 27

2 Dissipative Motion 30
2.1 Far Field Dynamics 30
 2.1.1 Far field equations 30
 2.1.2 Phase field of a moving vortex 32
 2.1.3 Dissipation integral and Peach-Köhler force 33
2.2 Matched Asymptotic Expansions 37
 2.2.1 Motivation 37
 2.2.2 Core expansion and matching 38
 2.2.3 Solvability condition 40
2.3 Inhomogeneities and Pinning 43
 2.3.1 Variable supercriticality 43
 2.3.2 Motion in a supercriticality ramp 43
 2.3.3 Quenched disorder 45
2.4 Vortices in Liquid Crystals 48
2.4.1 Dynamics of coarsening in thin layers 48
2.4.2 Two-dimensional nematics and smectics C 51
2.4.3 Nematics in external field 51
2.5 Defects in Three-Dimensional Nematics 54
 2.5.1 Static solutions 54
 2.5.2 Monopoles joined by a string 55
 2.5.3 Motion of interacting defects 57
 2.5.4 Alternative core structures 59

3 Dislocations in Patterns 61
 3.1 Striped Patterns 61
 3.1.1 Amplitude equations 61
 3.1.2 Phase dynamics 63
 3.1.3 Singularities of the phase field 66
 3.2 Motion of Dislocations 67
 3.2.1 The nature of the driving force 67
 3.2.2 Zipping technique 68
 3.2.3 Self-consistent solution 72
 3.2.4 Particle-field computations 73
 3.3 Dislocations in an Isotropic System 76
 3.3.1 Solution of NWS phase equation 76
 3.3.2 Mobility estimates 78
 3.4 Dislocations in Resonant Patterns 80
 3.4.1 Resonant interactions 80
 3.4.2 Dislocations in hexagonal patterns 83
 3.4.3 Rigidity of a resonant structure 86
 3.4.4 Dislocations in 3d structures 89

4 Vortices in Superfluids 91
 4.1 Superfluid Models 91
 4.1.1 Nature of the superfluid state 91
 4.1.2 Basic equations 93
 4.1.3 Vortex structure 94
 4.1.4 Thermodynamic stability 95
 4.2 Conservative Dynamics 97
 4.2.1 Motion of point vortices 97
 4.2.2 Fluid-mechanical representation 99
 4.2.3 Integrals of motion 100
 4.3 Vortex–Sound Interaction 102
 4.3.1 Second sound 102
 4.3.2 Acoustic radiation by moving vortices 104
 4.3.3 Acoustic drag 107
 4.3.4 Acoustic Magnus force 110
 4.4 Dissipation and Instabilities 113
 4.4.1 Two-fluid model 113
4.4.2 Dissipative vortex drift 114
4.4.3 Stability of flow and nucleation of vortices 116
4.4.4 Stability of non-uniform flow 118

4.5 Motion on an Inhomogeneous Background 122
4.5.1 Optical vortex in a non-uniform beam 122
4.5.2 Vortex drift 123
4.5.3 Interaction of vortices in a central field 125

5 Motion of Line Vortices 129
5.1 Locally Induced Motion 129
5.1.1 Intrinsic equations of motion of curves 129
5.1.2 Binormal motion 131
5.1.3 Aligned coordinate frame 134
5.1.4 Normal motion 136

5.2 Conservative Motion 137
5.2.1 Biot–Savart integral 137
5.2.2 Core expansion and matching 140
5.2.3 Energy and momentum of flow field 141
5.2.4 Ring vortex 145
5.2.5 Helices and coaxial rings 146

5.3 Oscillations and Instabilities 148
5.3.1 LIA spectrum 148
5.3.2 Perturbations of a straight-line vortex 150
5.3.3 Nonlocal filament equation 152
5.3.4 Perturbations of parallel vortices 155
5.3.5 Oscillations of a ring vortex 158
5.3.6 Acoustic effect of oscillations 161

5.4 Dissipation and Turbulence 164
5.4.1 Dissipative induction 164
5.4.2 LIA computations 166
5.4.3 Vortex reconnection 168
5.4.4 Pinning and depinning 171

6 Vortices in Superconductors 173
6.1 Static Vortices 173
6.1.1 Ginzburg–Landau energy 173
6.1.2 Bogomolny equations 176
6.1.3 Vortex structure in type II superconductors 177
6.1.4 Peach–Köhler force 179
6.1.5 Anisotropic vortex structure 180

6.2 Conservative Dynamics 182
6.2.1 Spacetime action 182
6.2.2 Hamiltonian dynamics of point vortices 184
6.2.3 Curvature-driven binormal motion 186
6.2.4 Induced electric field 187
CONTENTS

6.2.5 Electric Magnus force 189
6.3 Dissipative Motion 191
6.3.1 Gradient flow 191
6.3.2 Curvature-driven normal motion 193
6.3.3 General mobility relation 194
6.3.4 Inhomogeneities and vortex pinning 195

7 Non-potential and Nonlocal Models 200
7.1 Spiral Waves 200
7.1.1 Complex Ginzburg–Landau equation 200
7.1.2 Plane wave solutions 201
7.1.3 Hagan’s solution 202
7.1.4 Asymptotic relations 204
7.1.5 Optical spiral vortices 207
7.1.6 Spiral waves in systems with separated scales 208
7.2 Instabilities and Interactions 211
7.2.1 Phenomenology of spiral wave patterns 211
7.2.2 Far field and core instabilities 213
7.2.3 Interactions of spiral vortices 215
7.2.4 Dynamics of scroll waves 218
7.3 Mean Field Models 219
7.3.1 Nonlocal nonlinear response 219
7.3.2 Vertical vorticity in convective patterns 221
7.3.3 Mean flow near the threshold 223
7.3.4 Interaction of a dislocation with mean flow 225
7.3.5 Driven and interacting defects 227
7.3.6 Dislocation in a spiral wave 229

8 Anisotropic Superfluids 231
8.1 Vortices in Complex Vector Fields 231
8.1.1 Coupled GL equations 231
8.1.2 Minimal orbits and topological defects 233
8.1.3 Structure of vortex cores 235
8.1.4 Instability of the dark core structure 238
8.2 Dynamics of Complex Vector Fields 240
8.2.1 Vortex interactions 240
8.2.2 Acoustics of complex vector fields 242
8.2.3 Vortex–kink interaction 242
8.2.4 Spiral vortices in vector fields 247
8.3 Vortices in Superfluid 3He 250
8.3.1 Order parameter of superfluid 3He 250
8.3.2 Topology of B-phase 252
8.3.3 Topology of A-phase 253
8.3.4 Superflow in A-phase 255
8.3.5 Structure of vortex cores 257
9 Relativistic Vortices and Strings 260
 9.1 Scalar Fields in Spacetime 260
 9.1.1 Vacuum as a nonlinear medium 260
 9.1.2 Lorentz-invariant Lagrangian 261
 9.1.3 Gauge-invariant Lagrangian 262
 9.1.4 Non-Abelian field theories 264
 9.2 Locally Induced Motion 265
 9.2.1 Nambu strings 265
 9.2.2 Comoving coordinate frame 267
 9.2.3 Analytic solutions 269
 9.3 Nonlocally Induced Motion 272
 9.3.1 Far field solution 272
 9.3.2 Asymptotic matching 274
 9.3.3 Large-scale dynamics 276

References 279
Index 286