V. Seshadri

The Inverse Gaussian Distribution
Statistical Theory and Applications
PART I STATISTICAL THEORY

1. Distribution theory
 1.0 Introduction ... 1
 1.1 Limit laws .. 5
 1.2 Sampling distributions 7
 1.3 Conditional distributions 15
 1.4 Bayesian sampling distributions 19

2. Estimation
 2.0 Introduction ... 23
 2.1 Estimation ... 24
 2.2 A shifted model 26
 2.3 Maximum likelihood estimation 28
 2.3 Estimation under truncation 37

3. Significance tests
 3.0 Introduction ... 38
 3.1 Likelihood-ratio tests. One sample case 38
 3.2 Brownian motion process 43
 3.3 Power considerations 44
 3.4 Two sample tests 45
 3.5 Interval estimation 52
 3.6 Examples ... 58
 3.7 Tolerance limits 61
 3.8 Tests of separate families 65
 3.9 Bahadur efficient tests 70

4. Sequential methods
 4.0 Introduction ... 73
 4.1 Sequential probability ratio test 73
 4.2 Sequential test for the mean and asymptotics 78
 4.3 Tests with known coefficient of variation 84
 4.4 Asymptotically risk-efficient sequential estimation 87
 4.5 Control charts .. 90

5. Reliability & Survival analysis
 5.0 Introduction ... 92
5.1 Estimation of reliability .. 92
5.2 Confidence bounds and tolerance limits 96
5.3 Hazard rate ... 102
5.4 Estimation of critical time .. 104
5.5 Confidence intervals for hazard rate. 106

6. Goodness-of-fit
6.0 Introduction ... 114
6.1 Modified Kolmogorov-Smirnov test 114
6.2 Anderson-Darling Statistic 116

7. Compound laws & mixtures
7.0 Introduction ... 121
7.1 Poisson-inverse Gaussian ... 121
7.2 Inference .. 125
7.3 Examples .. 133
7.4 A compound inverse Gaussian model 136
7.5 Normal-gamma mixture ... 139
7.6 Normal inverse Gaussian mixture 141
7.7 A mixture inverse Gaussian 143
7.8 Exponential-inverse Gaussian mixtures 150
7.9 Birnbaum-Saunders distribution 154
7.10 Linear models and the P-IG law 159
7.11 P-IG regression model .. 163

PART II APPLICATIONS

A. Actuarial science .. 167
Claim cost analysis .. 167

B. Analysis of reciprocals ... 172
One-way classification ... 172
An application in environmental sciences 175
Analysis of two factor experiments 181
Tests for model adequacy .. 185
The analysis of reciprocals ... 187

C. Demography .. 191

D. Histomorphometry .. 194

E. Electrical networks .. 198
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Hydrology</td>
<td>203</td>
</tr>
<tr>
<td>Emptiness of a dam</td>
<td>204</td>
</tr>
<tr>
<td>G. Life tests</td>
<td>206</td>
</tr>
<tr>
<td>Shelf life failures</td>
<td>206</td>
</tr>
<tr>
<td>Accelerated life tests</td>
<td>207</td>
</tr>
<tr>
<td>Least squares</td>
<td>210</td>
</tr>
<tr>
<td>Variable stress accelerated tests</td>
<td>214</td>
</tr>
<tr>
<td>H. Management science</td>
<td>220</td>
</tr>
<tr>
<td>Labour turnover</td>
<td>220</td>
</tr>
<tr>
<td>Duration of strikes</td>
<td>223</td>
</tr>
<tr>
<td>I. Meteorology</td>
<td>230</td>
</tr>
<tr>
<td>J. Mental health</td>
<td>232</td>
</tr>
<tr>
<td>K. Physiology</td>
<td>235</td>
</tr>
<tr>
<td>Tracer dilution curves</td>
<td>235</td>
</tr>
<tr>
<td>Pharmacokinetics</td>
<td>237</td>
</tr>
<tr>
<td>Interspike train interval analysis</td>
<td>239</td>
</tr>
<tr>
<td>L. Remote sensing</td>
<td>252</td>
</tr>
<tr>
<td>Photogrammetry</td>
<td>252</td>
</tr>
<tr>
<td>Cookie cutter detection</td>
<td>257</td>
</tr>
<tr>
<td>M. Traffic-noise intensity</td>
<td>259</td>
</tr>
<tr>
<td>Model assumptions</td>
<td>259</td>
</tr>
<tr>
<td>N. Market research</td>
<td>262</td>
</tr>
<tr>
<td>O. Regression</td>
<td>265</td>
</tr>
<tr>
<td>Asymptotics</td>
<td>270</td>
</tr>
<tr>
<td>Analysis of Reciprocals (revisited)</td>
<td>273</td>
</tr>
<tr>
<td>Regression diagnostics</td>
<td>275</td>
</tr>
<tr>
<td>Strong consistency and bookstrap</td>
<td>280</td>
</tr>
<tr>
<td>P. Slug lengths in pipelines</td>
<td>284</td>
</tr>
<tr>
<td>Q. Ecology</td>
<td>286</td>
</tr>
<tr>
<td>Time till extinction</td>
<td>286</td>
</tr>
<tr>
<td>Endangered species</td>
<td>289</td>
</tr>
</tbody>
</table>
R. Entomology ... 298
 A stochastic model .. 298
 Estimation and model adequacy 300

S. Small area estimation 305

T. CUSUM ... 309
 Cusum charts ... 309

U. Plutonium Estimation 314
 Model development ... 314

References .. 317
Author Index .. 340
Subject Index .. 345
Glossary ... 347