p- and hp-Finite Element Methods
Theory and Applications in Solid and Fluid Mechanics

CH. SCHWAB
Associate Professor,
Seminar for Applied Mathematics,
ETH Zürich

CLARENDON PRESS • OXFORD
1998
CONTENTS

1 Variational formulation of boundary value problems 1
 1.1 Model problems 1
 1.1.1 Axially loaded, elastically supported bar 1
 1.1.2 Membrane problem 4
 1.2 Generalized solutions 7
 1.2.1 Classical solution 7
 1.2.2 Generalized formulations 7
 1.2.3 Generalized formulations of the bar problem 9
 1.2.4 Essential and natural boundary conditions 13
 1.2.5 Generalized formulations of the membrane problem 13
 1.3 Existence of weak solutions. Inf-sup condition 15
 1.3.1 Theory 15
 1.3.2 Examples 21
 1.4 Inh. essen. bound. conditions. Space $H^{1/2}_{00}$ 27
 1.4.1 The trace space $H^{1/2} (\Gamma)$ 27
 1.4.2 The problem of discontinuous Dirichlet data 28
 1.4.3 The space $H^{1/2}_{00} (\Gamma^{[1]})$ 31
 1.5 Examples for generalized formulations 32
 1.5.1 Mixed formulation of the bar problem I 32
 1.5.2 Mixed formulation of the bar problem II 35
 1.5.3 An initial value problem 36
 1.5.4 The heat equation 37
 1.5.5 Mixed formulation of the membrane problem 40
 1.6 Bibliographical remarks 42

2 The Finite Element Method (FEM): Definition, Basic Properties 43
 2.1 Approximate solutions 43
 2.2 Acceptance criteria and refinements 46
 2.3 Stability, consistency and convergence 47
 2.4 Variational crimes/nonconforming FEM 54

3 hp-Finite Elements in one dimension 57
 3.1 The finite element spaces $S^{p,f} (\Omega, T)$ 57
 3.1.1 Meshes 57
 3.1.2 Element mappings 57
 3.1.3 Definition of $S^{p,f} (\Omega, T)$ 58
 3.1.4 Basis of S^{p} 58
 3.1.5 Element shape functions 60
 3.1.6 Basis functions of $S^{p,f} (\Omega, T)$ 60
3.2 Algorithmic pattern of the hp-FEM

3.3 The approximation properties of $S^{p,t}(\Omega, T)$

3.3.1 Basic approximation properties of S^p on $\tilde{\Omega} = (-1,1)$ (70)

3.3.2 Rate of convergence of the hp-FEM with quasiuniform meshes (75)

3.3.3 Analytic solutions (78)

3.3.4 Singular solutions. h-version FEM (80)

3.3.5 Singular solutions. p-version FEM (83)

3.3.6 Singular solutions. hp-FEM (89)

3.3.7 Mesh optimization for h-version FEM (96)

3.4 Problems with boundary layers. Robustness (100)

3.4.1 Reaction-diffusion problem (100)

3.4.2 Regularity of the solution (102)

3.4.3 The finite element method (105)

3.4.4 Robustness (106)

3.4.5 p approximation results (108)

3.4.6 hp approximation results (118)

3.4.7 Numerical results (124)

3.4.8 Convection-diffusion problem (130)

3.4.9 Variational formulation (132)

3.4.10 hp-finite element discretization (135)

3.5 A posteriori error estimate (142)

3.5.1 Abstract residual error estimate (142)

3.5.2 Application to hp-FEM [6] (143)

3.6 Inverse inequalities (148)

3.6.1 Basic inverse inequality (148)

3.6.2 Weighted inverse estimates (149)

3.7 Bibliographical remarks (152)

4 hp-Finite Elements in two dimensions (154)

4.1 Model problem (154)

4.2 Regularity of the solution - I (156)

4.3 Linear finite elements with mesh refinement (158)

4.3.1 Meshes consisting of triangles (158)

4.3.2 The finite element spaces $S^{p,t}(\Omega, T)$ (160)

4.3.3 Approximation properties of $S^{1,1}(\Omega, T)$ (161)

4.3.4 Extension to meshes containing quadrilaterals (167)

4.4 hp-FEM in two dimensions. Space $S^{p,t}(\Omega, T)$ (169)

4.4.1 The geometric mesh families (169)

4.4.2 Construction of $S^{p,t}(\Omega, T)$ (172)

4.5 The rate of convergence of the hp-FEM (179)

4.5.1 Regularity of the solution (179)

4.5.2 Basic approximation results for hp-FEM (180)

4.5.3 hp-Approximation of $u \in B_\beta^2$ on a polygon (198)

4.5.4 hp-FEM on quasiuniform meshes (200)
4.6 Inverse inequalities and trace liftings 207
4.6.1 Basic inverse inequalities 208
4.6.2 Inequalities in $H^{1/2}(-1, 1)$ 210
4.6.3 Polynomial trace liftings 213
4.7 hp-Preconditioning 214
4.7.1 Preliminary remarks 214
4.7.2 Preconditioning hp-FEM by low-order elements 215
4.8 Bibliographical remarks and further results 221

5 Finite Element Analysis of Saddle Point Problems. Mixed hp-FEM in incompressible fluid flow 223
5.1 Introduction. Navier–Stokes equations 223
5.2 Abstract saddle point problems. Inf-sup condition 226
5.2.1 Minimization problems with constraints 226
5.2.2 Abstract saddle point problems 227
5.3 Existence for the Stokes problem 233
5.4 FE discretization of saddle point problems 234
5.5 Finite elements for the Stokes problem 240
5.5.1 General results 240
5.5.2 The $Q_1 - P_0$ element and spurious pressure modes 242
5.5.3 Verifying the inf–sup conditions: Fortin’s lemma 245
5.5.4 An approximation result: Clément interpolant 246
5.5.5 Some stable low-order elements 247
5.5.6 Bubble stabilization of Stokes elements 252
5.5.7 Macroelement techniques 254
5.5.8 p- and hp-FEM for the Stokes Problem 259
5.6 Further results and bibliographical remarks 273

6 hp-FEM in the Theory of Elasticity 275
6.1 A brief synopsis of the theory of elasticity 275
6.1.1 Kinematics 275
6.1.2 Equilibrium 277
6.1.3 Piola transform 278
6.1.4 Constitutive laws 279
6.1.5 Small strains. St. Venant–Kirchhoff material 281
6.1.6 Hyper-elasticity 282
6.1.7 Linearized three-dimensional elasticity 284
6.2 Membranes, plates and shells 292
6.2.1 Membranes and plates 292
6.2.2 Shells 297
6.2.3 Koiter’s shell model 301
6.2.4 Naghdi’s shell model 306
6.2.5 Asymptotics of Koiter shells as $\varepsilon \to 0$. Bending and membrane dominated shells 310
6.2.6 The case of a plate 314