Table of contents

Chapter I. Probability theory

I.1 Probability spaces 1
I.2 Stochastic variables 9
I.3 Product measures and statistical independence 13
I.4 Functions of stochastic vectors 18
I.5 Expectation, variance and covariance of stochastic variables 21
I.6 Independence of normally distributed variables 30
I.7 Distribution functions and probability distributions 37
I.8 Moments, moment generating functions and characteristic functions 40
I.9 The central limit theorem 47
I.10 Transformation of probability densities 51
I.11 Exercises 53

Chapter II. Statistics and their probability distributions, estimation theory

II.1 Introduction 62
II.2 The gamma distribution and the χ^2-distribution 66
II.3 The t-distribution 76
II.4 Statistics to measure differences in mean 80
II.5 The F-distribution 86
II.6 The beta distribution 90
II.7 Populations which are not normally distributed 95
II.8 Bayesian estimation 97
II.9 Estimation theory in a more general framework 103
II.10 Maximum likelihood estimation, sufficiency 119
II.11 Exercises 129

Chapter III. Hypothesis tests

III.1 The Neyman-Pearson theory 142
III.2 Hypothesis tests concerning normally distributed populations 153
III.3 The χ^2-test on goodness of fit 165
Chapter IV. Simple regression analysis

IV.1 The method of least squares 182
IV.2 Construction of an unbiased estimator of σ^2 192
IV.3 Normal regression analysis 194
IV.4 Pearson's product-moment correlation coefficient 198
IV.5 The sum of squares of errors as a measure of the amount of linear structure 201
IV.6 Exercises 204

Chapter V. Normal analysis of variance

V.1 One-way analysis of variance 208
V.2 Two-way analysis of variance 214
V.3 Exercises 223

Chapter VI. Non-parametric methods

VI.1 The sign test, Wilcoxon's signed-rank test 227
VI.2 Wilcoxon's rank-sum test 233
VI.3 The runs test 238
VI.4 Rank correlation tests 241
VI.5 The Kruskal–Wallis test 246
VI.6 Friedman's test 249
VI.7 Exercises 253

Chapter VII. Stochastic analysis and its applications in statistics

VII.1 The empirical distribution function associated with a sample 257
VII.2 Convergence of stochastic variables 259
VII.3 The Glivenko–Cantelli theorem 276
VII.4 The Kolmogorov–Smirnov test statistic 284
VII.5 Metrics on the set of distribution functions 288
VII.6 Smoothing techniques 299
VII.7 Robustness of statistics 305
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.8</td>
<td>Trimmed means, the median, and their robustness</td>
<td>311</td>
</tr>
<tr>
<td>VII.9</td>
<td>Statistical functionals</td>
<td>326</td>
</tr>
<tr>
<td>VII.10</td>
<td>The von Mises derivative; influence functions</td>
<td>339</td>
</tr>
<tr>
<td>VII.11</td>
<td>Bootstrap methods</td>
<td>350</td>
</tr>
<tr>
<td>VII.12</td>
<td>Estimation of densities by means of kernel densities</td>
<td>357</td>
</tr>
<tr>
<td>VII.13</td>
<td>Estimation of densities by means of histograms</td>
<td>365</td>
</tr>
<tr>
<td>VII.14</td>
<td>Exercises</td>
<td>369</td>
</tr>
</tbody>
</table>

Chapter VIII. Vectorial statistics

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII.1</td>
<td>Linear algebra</td>
<td>382</td>
</tr>
<tr>
<td>VIII.2</td>
<td>The expectation vector and the covariance operator of stochastic vectors</td>
<td>396</td>
</tr>
<tr>
<td>VIII.3</td>
<td>Vectorial samples</td>
<td>407</td>
</tr>
<tr>
<td>VIII.4</td>
<td>The vectorial normal distribution</td>
<td>410</td>
</tr>
<tr>
<td>VIII.5</td>
<td>Conditional probability distributions that emanate from Gaussian ones</td>
<td>422</td>
</tr>
<tr>
<td>VIII.6</td>
<td>Vectorial samples from Gaussian distributed populations</td>
<td>428</td>
</tr>
<tr>
<td>VIII.7</td>
<td>Vectorial versions of the fundamental limit theorems</td>
<td>442</td>
</tr>
<tr>
<td>VIII.8</td>
<td>Normal correlation analysis</td>
<td>452</td>
</tr>
<tr>
<td>VIII.9</td>
<td>Multiple regression analysis</td>
<td>460</td>
</tr>
<tr>
<td>VIII.10</td>
<td>The multiple correlation coefficient</td>
<td>471</td>
</tr>
<tr>
<td>VIII.11</td>
<td>Exercises</td>
<td>477</td>
</tr>
</tbody>
</table>

Appendix A. Lebesgue’s convergence theorems | 482
Appendix B. Product measures | 485
Appendix C. Conditional probabilities | 488
Appendix D. The characteristic function of the Cauchy distribution | 492
Appendix E. Metric spaces, equicontinuity | 495
Appendix F. The Fourier transform and the existence of stoutly tailed distribution functions | 504

List of elementary probability densities | 510
Frequently used symbols | 512
Statistical tables | 518
References | 537
Index | 541