Using MATLAB, SIMULINK and Control System Toolbox

A practical approach

Alberto Cavallo
Roberto Setola
Francesco Vasca

Prentice Hall
London New York Toronto Sydney Tokyo Singapore Madrid Mexico City Munich
1 Introduction

1 MATLAB

2 Fundamentals
  2.1 Keyboard input
  2.2 Input from external files
  2.3 Utility commands
  2.4 Exercises

3 Vector and matrix manipulation
  3.1 Elements of a matrix
  3.2 Interval representation
  3.3 Matrix manipulation operations
  3.4 Special matrices
  3.5 Character strings
  3.6 Advanced matrix manipulation techniques
  3.7 Exercises

4 Scalar operations
  4.1 Arithmetic operations
  4.2 Elementary and transcendental functions
  4.3 Examples
  4.4 Logical and relational operators
  4.5 Exercises
5 Matrix operations
  5.1 Transpose
  5.2 Algebraic operations
  5.3 Matrix functions
  5.4 Logic operations
  5.5 Complements on matrices
  5.6 More special matrices
  5.7 Exercises

6 Polynomials
  6.1 Basic operations
  6.2 Interpolation
  6.3 Exercises

7 Graphics
  7.1 2D graphics
  7.2 Multiple plots
  7.3 Axis scaling
  7.4 Complex data
  7.5 More 2D graphs
  7.6 Plotting more graphs on the same window
  7.7 3D graphics
  7.8 Functions of two variables
  7.9 Color in MATLAB
  7.10 Parametric plots
  7.11 Revolution surfaces
  7.12 Printing graphics
  7.13 Exercises

8 Programming in MATLAB
  8.1 Basic programming structures
  8.2 Script files
  8.3 Functions
  8.4 Debugging programs
  8.5 Exercises

9 Numeric analysis
  9.1 Infinitesimal analysis
  9.2 Nonlinear equations and optimization
  9.3 Differential equations
  9.4 Exercises
II SIMULINK 121

10 Fundamentals 123
  10.1 Building a SIMULINK scheme 124
  10.2 Analysis of the scheme 127
  10.3 Exercises 129

11 SIMULINK schemes 131
  11.1 Using the mouse 131
  11.2 Structural properties of the blocks 134
  11.3 A nonlinear example 136
  11.4 Sources and sinks 139
  11.5 Some nonlinear blocks 142
  11.6 Exercises 145

12 Simulation in SIMULINK 153
  12.1 Simulation problems 153
  12.2 Integration methods 157
  12.3 System with discontinuities 159
  12.4 Time-varying systems 161
  12.5 Exercises 163

13 Multi-variable systems 167
  13.1 Multi-variable schemes 167
  13.2 Connections 170
  13.3 An example: a planar manipulator 172
  13.4 Exercises 174

14 Group operation 179
  14.1 Using the group option 179
  14.2 Exercises 182

15 Discrete-time systems 185
  15.1 An example: the repopulation of a lake 185
  15.2 Exercises 188

16 Hybrid systems 193
  16.1 Hybrid schemes 193
  16.2 Exercises 196

17 Advanced topics 198
  17.1 System analysis 198
  17.2 Using Mask 203
  17.3 Customizing SIMULINK 207
Contents

17.4 Exercises 207

18 Blocks library 209
18.1 Sources 209
18.2 Sinks 213
18.3 Discrete 216
18.4 Linear 219
18.5 Nonlinear 222
18.6 Connections 229
18.7 Extras 230

III Control System Toolbox 235

19 Models for LTI systems 237
19.1 LTI system representations 237
19.2 Conversions among representations 242
19.3 Continuous to discrete conversion 247
19.4 Controllability and observability 254
19.5 Commands for other properties 258
19.6 Model order reduction 261
19.7 System connections 265
19.8 Exercises 270

20 Time domain response 278
20.1 Unforced response 280
20.2 Step response 281
20.3 Impulse response 283
20.4 Response to any input 284
20.5 Exercises 285

21 Frequency domain response 289
21.1 Bode plots 290
21.2 Nyquist plots 292
21.3 Nichols plots 293
21.4 Gain and phase margins 297
21.5 Exercises 300

22 Root locus 306
22.1 Root locus plot 306
22.2 Exercises 310