Contents

Preface

| Preface | v |

Introduction

General Concept	xiii
Atmospheric Applications	xv
Relevant Laboratory Studies	xvii

Chapter 1 Statistical Physics and Thermodynamics of Bimolecular Complexes

A. A. Vigasin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Equilibrium Composition of Associating Gas</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Mass-Action Law</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Partition Functions</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Predictions Based on Intermolecular Potentials</td>
<td>7</td>
</tr>
<tr>
<td>3 Bound and Metastable States of the Interacting Molecules</td>
<td>13</td>
</tr>
<tr>
<td>3.1 A Set of Quantum Oscillators</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Subdivision of Phase Space for Diatomics</td>
<td>13</td>
</tr>
<tr>
<td>3.3 General Model of the Phase Space Subdivision for Polyatomic Dimers</td>
<td>15</td>
</tr>
<tr>
<td>4 Statistical Average of the Individual Characteristics of Dimers</td>
<td>22</td>
</tr>
<tr>
<td>4.1 Dissociation Energy</td>
<td>22</td>
</tr>
<tr>
<td>4.2 Collision-Induced Absorption in the Gas Phase</td>
<td>24</td>
</tr>
<tr>
<td>— Integrated Intensity</td>
<td>25</td>
</tr>
<tr>
<td>— A Case Study of the CIA Intensity Subdivision for N₂, O₂, and CO₂</td>
<td>28</td>
</tr>
</tbody>
</table>

References

| References | 32 |
Chapter 2 Non-Rigidity in van der Waals Molecules: Some Case Studies 34
R. G. A. Bone

1 Introduction 34
2 Tunneling Phenomena and Symmetry 37
3 Occurrence of Argon, C₂H₂ and SO₂ in Atmospheres and the Cosmos 39
 3.1 Argon 39
 3.2 C₂H₂ 40
 3.3 SO₂ 40
4 Examples of Non-Rigidity in van der Waals Molecules 41
 4.1 Ar-SO₂ 41
 4.2 (SO₂)₂ 43
 4.3 (C₂H₂)₂ 47
 4.4 (C₂H₂)₃ 49
 4.5 (C₂H₂)₄ and (C₂H₂)₅ 51
 4.6 Ar-C₂H₂ 53
5 Conclusions 55
References 56

Chapter 3 Dimeric Absorption in the Atmosphere 60
A. A. Vagasin

1 Introduction 60
2 Weakly Bound Species in Planetary Atmospheres 61
 2.1 Jupiter, Saturn, and Titan 61
 2.2 Mars and Venus 67
 2.3 Earth 72
3 Water Vapor Continuum Absorption 81
 3.1 Water Complexes and Continuum Absorption 84
 3.2 About Controversies of Dimeric Hypothesis 88
 3.3 Concluding Remarks 91
References 92
Chapter 4 Dimers in Earth's and Planetary Atmospheres:
The (H$_2$O)$_2$, (N$_2$)$_2$, N$_2$-O$_2$, (O$_2$)$_2$, (O$_3$)$_2$, (CO$_2$)$_2$, (H$_2$)$_2$, and Ar-N$_2$ Cases
Z. Slanina, S. J. Kim, K. Fox, F. Uhlik, and A. Hinchliffe

1 Introduction 101
2 The Water Dimer 102
3 The (N$_2$)$_2$, N$_2$-O$_2$, and (O$_2$)$_2$ Species 112
4 The Ozone Dimer 116
5 (CO$_2$)$_2$ & Venus 119
6 (H$_2$)$_2$ & Jupiter 122
7 Ar-N$_2$ & Titan 124
8 Concluding Remarks 125

References 125

Chapter 5 Fullerenes & Other Carbon Aggregates, and the Diffuse Interstellar Bands
Z. Slanina, L. Adamowicz, J.-P. François, and E. Ōsawa

1 Introduction 134
2 The Diffuse Interstellar Bands 136
2.1 Highly Unsaturated Hydrocarbons 139
3 Small Carbon Clusters 142
4 C$_{60}$ and C$_{70}$ Fullerenes 150
4.1 Fullerenes in Nature 154
4.2 Seminatural Occurrence of Fullerenes 157
5 Higher Fullerenes 159
6 Modified Fullerenes 162
7 Concluding Remarks 165

References 166
Chapter 6 Planetary Atmospheres: The Role of Collision-Induced Absorption
L. M. Trafton

1 Introduction 177
2 Historical Background 178
3 CIA Enhancement of the Greenhouse Effect 181
4 Voyager Observations of the CIA Rotational-Translational Band of H₂-He 183
 4.1 The He/H₂ Ratio 183
 4.2 The Ortho-Para H₂ Ratio 185
5 Post-Voyager Results 185
 5.1 Ground Based Observations of the H₂ Fundamental Band 186
 5.2 Venus and CIA Night Sky Emission from CO₂ 186
 5.3 A Massive Early Atmosphere on Triton? 187
 5.4 The 2.15 μm N₂ Ice Band and the Atmospheres of Triton and Pluto 187
6 Extrasolar Planets 188
References 190

Chapter 7 Chemical and Optical Properties of Molecular Complexes Using Matrix Isolation Spectroscopy
L. Schriver-Mazzuoli

1 Introduction 194
2 Experimental Techniques 195
 2.1 Closed-cycle Refrigeration 195
 2.2 Sample Preparation 196
 2.3 Sample Deposition 199
 2.4 Matrix Properties 200
 2.5 IR Spectroscopy in Matrices 202
3 Vibrational Spectroscopy 202
 3.1 Charge Transfer Complexes 202
3.2 Hydrogen Bonded Complexes

--- Halogen-Base Complexes
--- Ozone-Base Complexes
--- SO$_2$ and SO$_3$-Base Complexes
--- Oxygen-Base Complexes
--- Hydrogen-Base Complexes
--- Weak and Medium Hydrogen Bonded Complexes
--- Hydrogen Halides
--- Water: Self Association
--- Water: Heteromolecular Complexes
--- Water Ices
--- Alcohols
--- Ammonia, Hydoroxylamine
--- Nitric and Nitrous Acid
--- Carboxylic Acids
--- Proton Transfer

3.3 Trapping of Two Structural Arrangements of Weak Complexes

4 Infrared Photodissociation of Hydrogen Bonded Complexes

4.1 Hydrogen Bonded Complexes IH...B
--- C → U Conversion
--- C ↔ U Back Conversion

4.2 Infrared Photoisomerization of the ROH Aggregates (R = CH$_3$, H)
--- Methanol Dimer
--- Methanol Trimer
--- Water Dimer

5 UV and Visible Photochemistry

5.1 Case Study: Photodissociation of the O$_3$: Br$_2$ and O$_3$: BrCl Complexes in Argon Matrix at 532, 633, and 870 nm

References
Chapter 8 Infrared Spectroscopy of Size-Selected Free and Adsorbed Water Complexes
F. Huisken

1 Introduction

2 Experimental
 2.1 Principle of Measurements
 2.2 Experimental Details

3 Results
 3.1 Free Water Clusters
 3.2 Water Complexes Embedded in Argon Host Clusters
 3.3 Water Complexes Embedded in Helium Host Clusters
 3.4 Methanol Attached to Water Host Clusters

4 Discussion
 4.1 Assignments
 4.2 Comparison with Calculations
 4.3 Solvated Water Complexes
 4.4 Correlation between Frequency Shift and Critical Temperature

5 Summary

References