Quasicrystals and Discrete Geometry

Jiří Patera
Editor

American Mathematical Society
Providence, Rhode Island
Contents

Preface xi

Similarity Submodules and Semigroups
Michael Baake and Robert V. Moody

1. Introduction 1
2. Definitions and preliminaries 2
3. Examples in one dimension 3
4. Examples in two dimensions 5
5. Examples in three dimensions 7

Pisot-Cyclotomic Quasilattices and Their Symmetry Semigroups
Damién Barache, Bernard Champagne and Jean-Pierre Gazeau

1. Introduction 15
2. The concept of a quasilattice in \mathbb{R}^d 18
3. How to get quasilattices: Windows in conjugate spaces 22
4. How to get quasilattices: Projection from root lattices 26
5. Symmetry semigroups for quasilattices 39
6. Quasilattices based on sets of β-integers 46
7. How to get quasilattices: 3D icosahedral quasilattices 54
 Appendix A Root of unity and cyclotomic numbers 60
 Appendix B Proof of the Proposition 3.1 63

Three Possible Branches of Determinate Modular Generalization of Crystallography
N. A. Bulienkov

1. Introduction 67
2. Modules of three-dimensional structures of crystals and of generalized crystallography 71
3. Tetrahedral determinate structures for spaces with opposite signs of curvature 73
4. The modular model of an icosahedral quasicrystal 88
5. Modular hierarchical pentagonal mosaics 104
6. Conclusions 129
Non-Crystallographic Root Systems

Liang Chen, Robert V. Moody and Jiří Patera

1. Introduction, review of finite root systems 135
2. $\mathbb{Z}[\tau]$-lattices 140
3. Wythoff polytopes 142
4. Root systems of types H_2, H_3, H_4 143
5. H_k-invariant lattices 151
6. Star maps 152
7. Meyer sets and quasicrystals 159
8. Amenability and growth 162
9. Examples of amenable regions 166
10. Inflation, quasiaddition, and generation of quasicrystals 172

Upper Bounds for the Lengths of Bridges

Ludwig Danzer

1. Introduction 179
2. Definitions and preliminaries 179
3. Results 183
4. Proofs 184
5. Tables 190

The Local Theorem for Tilings

Nikolai Dolbilin and Doris Schattschneider

1. Preliminaries 194
2. The Theorem 196

Uniform Distribution and the Projection Method

A. Hof

1. Introduction 201
2. Definitions and notation 202
3. Ergodicity 203
4. Application to the projection method 204
5. Generalization 205

One Corona is enough for the Euclidean Plane

Doris Schattschneider and Nikolai Dolbilin

1. Preliminaries 208
2. The one-corona theorem for polygonal tilings 210
3. The Escher problem 236
4. Catalog of Monohedral Tilings 237
Cut-and-Project Sets in Locally Compact Abelian Groups

MARTIN SCHLOTTMANN

1 Introduction 247
2 Density of cut-and-project sets 248
3 Proof of Proposition 2.1 250
4 The general density formula 253
5 Regular cut-and-project sets 255
6 Existence of standard projection strips 258
7 Local uniqueness of standard projection strips 260
8 Conclusion 262
Appendix Topological Abelian Groups 263

Spectrum of Dynamical Systems Arising from Delone Sets

BORIS SOLOMYAK

1 Introduction 265
2 Delone sets 266
3 Abstract dynamical systems 269
4 Continuous eigenfunctions 270
5 Pure discrete spectrum 271

Non-Locality and Aperiodicity of d-Dimensional Tilings

GERRIT van OPHUYSSEN

1 Introduction 277
2 Cluster, tiling and species 278
3 Global aspects 279
4 Non-locality 282
5 Consequences of locality 283
6 Results and discussion 287

Index 289