Contents

Notation xiii

1 Fundamental concepts 1
 1.1 Probability and random variables 1
 1.2 Interpretation of probability 4
 1.2.1 Probability as a relative frequency 4
 1.2.2 Subjective probability 5
 1.3 Probability density functions 7
 1.4 Functions of random variables 13
 1.5 Expectation values 16
 1.6 Error propagation 20
 1.7 Orthogonal transformation of random variables 22

2 Examples of probability functions 26
 2.1 Binomial and multinomial distributions 26
 2.2 Poisson distribution 29
 2.3 Uniform distribution 30
 2.4 Exponential distribution 31
 2.5 Gaussian distribution 32
 2.6 Log-normal distribution 34
 2.7 Chi-square distribution 35
 2.8 Cauchy (Breit–Wigner) distribution 36
 2.9 Landau distribution 37

3 The Monte Carlo method 40
 3.1 Uniformly distributed random numbers 40
 3.2 The transformation method 41
 3.3 The acceptance–rejection method 42
 3.4 Applications of the Monte Carlo method 44

4 Statistical tests 46
 4.1 Hypotheses, test statistics, significance level, power 46
 4.2 An example with particle selection 48
 4.3 Choice of the critical region using the Neyman–Pearson lemma 50
 4.4 Constructing a test statistic 51
Contents

4.4.1 Linear test statistics, the Fisher discriminant function 51
4.4.2 Nonlinear test statistics, neural networks 54
4.4.3 Selection of input variables 56
4.5 Goodness-of-fit tests 57
4.6 The significance of an observed signal 59
4.7 Pearson's χ^2 test 61

5 General concepts of parameter estimation 64
5.1 Samples, estimators, bias 64
5.2 Estimators for mean, variance, covariance 66

6 The method of maximum likelihood 70
6.1 ML estimators 70
6.2 Example of an ML estimator: an exponential distribution 72
6.3 Example of ML estimators: μ and σ^2 of a Gaussian 74
6.4 Variance of ML estimators: analytic method 75
6.5 Variance of ML estimators: Monte Carlo method 76
6.6 Variance of ML estimators: the RCF bound 76
6.7 Variance of ML estimators: graphical method 78
6.8 Example of ML with two parameters 80
6.9 Extended maximum likelihood 83
6.10 Maximum likelihood with binned data 87
6.11 Testing goodness-of-fit with maximum likelihood 89
6.12 Combining measurements with maximum likelihood 92
6.13 Relationship between ML and Bayesian estimators 93

7 The method of least squares 95
7.1 Connection with maximum likelihood 95
7.2 Linear least-squares fit 97
7.3 Least squares fit of a polynomial 98
7.4 Least squares with binned data 100
7.5 Testing goodness-of-fit with χ^2 103
7.6 Combining measurements with least squares 106
7.6.1 An example of averaging correlated measurements 109
7.6.2 Determining the covariance matrix 112

8 The method of moments 114

9 Statistical errors, confidence intervals and limits 118
9.1 The standard deviation as statistical error 118
9.2 Classical confidence intervals (exact method) 119
9.3 Confidence interval for a Gaussian distributed estimator 123
9.4 Confidence interval for the mean of the Poisson distribution 126
9.5 Confidence interval for correlation coefficient, transformation of parameters 128