Thomas M. Will

Phase Equilibria in Metamorphic Rocks

Thermodynamic Background and Petrological Applications

With 84 Figures and 8 Tables

Springer
A. Mineral Solid Solutions

1 Substitutions: Some General Remarks
2 Thermodynamics of Solid Solutions
 2.1 Ideal Entropy of Mixing (Ideal Configurational Entropy)
 2.2 Ideal Mixing Activities
 2.2.1 General Concepts
 2.2.2 Thermodynamic Models for Ideal Mixing Activities
 Worked Example 1: Calculating ideal mixing activities from electron microprobe analyses
2.3 Enthalpy of Mixing and the Activity Coefficient γ
 2.3.1 Modelling Activities of Solid Solutions
 2.3.2 The Nearest Neighbour Model
 2.3.3 The Ideal Mixing Model
 2.3.4 The Regular Mixing Model
 2.3.5 The Quasi-Chemical Mixing Model
 2.3.6 The Subregular Mixing Model
 2.3.7 Darken's Quadratic Formalism (DQF)
 2.3.8 Reciprocal Solid Solutions
 Worked Example 2: Micro- and macroscopic interaction parameters, and complete activity coefficients for a reciprocal clino-pyroxene solid solution in the system CaO-MgO-Al$_2$O$_3$-SiO$_2$

B. Geothermometry and Geobarometry

3 Basic Principles of Geothermometry and Geobarometry
4 Potential Pitfalls of Pressure and Temperature Estimations
5 Selected Geothermometers and Geobarometers
6 Geothermobarometric Investigations on a Metapelitic Rock
 6.1 Calculation of Univariant Mineral Equilibria
 Worked Example 3: The geobarometer reaction 2 kyanite + grossular + quartz = 3 anorthite
6.2 Error Estimation on Univariant Mineral Equilibria
 Worked Example 4: The geothermometer reaction phlogopite +
almandine = annite + pyrope

6.3 Error Estimation on the Intersection of two Reactions
6.4 Some Brief Remarks on Pressure-Temperature Paths

C. Phase Diagrams

7 Systems and Model Systems
8 Representing Minerals in Compatibility Diagrams
8.1 Reaction Balancing
8.2 Projecting from Excess Phases

Worked Example 5: Representing and projecting minerals in the metapelitic model system KAlO\(_2\)-FeO-MgO-Al\(_2\)O\(_3\)-SiO\(_2\)-H\(_2\)O

9 General Features of Phase Diagrams
9.1 The Total Phase Diagram
9.2 Reducing the Dimension of the Total Phase Diagram
9.2.1 Sections
9.2.2 Projections
9.2.3 Pseudosections

10 Types of Phase Diagrams
10.1 \(GX\) Diagrams and Compatibility Diagrams
10.1.1 Topological Features of Compatibility Diagrams
10.1.2 Applications of Compatibility Diagrams

Worked Example 6: Phase relations in the simplified calcisilicate model system CaO-MgO-SiO\(_2\)-CO\(_2\)-H\(_2\)O

10.1.3 Compatibility Diagrams with Mineral Solid Solutions in Excess
10.2 \(TX\) and \(PX\) Sections
10.2.1 Construction Rules for i-e Sections
10.3 \(PT\) Projections and Petrogenetic Grids
10.4 \(TX\) and \(PX\) Projections
10.5 \(PT\) and \(TX\) Pseudosections

Worked Example 7: \(TX\) sections and \(PT\) pseudosections for mineral equilibria in metabasic rocks at high pressures

11 Schreinemakers Analysis
11.1 Schreinemakers Rules
11.1.1 Schreinemakers First Rule—The Metastable Extension Rule
11.1.2 Schreinemakers Second Rule—The 180° Rule
11.2 Sequence of a Schreinemakers Analysis

Worked example 8: Some equilibrium relationships in the end-member system MgO-Al\(_2\)O\(_3\)-SiO\(_2\)-H\(_2\)O (MASH) at high temperatures

Worked example 9: A Schreinemakers analysis in the end-member system CaO-MgO-Al\(_2\)O\(_3\)-SiO\(_2\)-CO\(_2\)-H\(_2\)O (CMASCH) at low pressures: A simplified model system for metabasic and calcisilicate rocks
Worked example 10: A Schreinemakers analysis in the system CMASH (CaO-MgO-Al₂O₃-SiO₂-H₂O): Sub-solidus phase relationships in ultramafic mantle rocks, and an application of the combinatorial rule ... 249

11.3 Schreinemakers Analysis in the Presence of Solid Solutions 256
11.3.1 The Influence of Additional System Components 256

Worked example 11: The influence of MnO on the stabilities of mineral assemblages in the system KFMASH: The extended metapelitic model system KMnFMASH (K₂O-MnO-FeO-MgO-Al₂O₃-SiO₂-H₂O) .. 261

11.3.2 Singularities and Singular Reactions .. 266

Appendix: Some Thermodynamic Principles—A Refresher 271

A1 Derivation of some Thermodynamic Functions 273
A1.1 Pressure and Temperature Dependence of Enthalpy and Entropy 278
A1.2 Pressure and Temperature Dependence of Heat Capacity and Volume .. 281
A2 Chemical Potentials, Standard States, and the Equilibrium Constant .. 285

References ... 291

Subject Index ... 311