Foundations of Complex-system Theories in Economics, Evolutionary Biology, and Statistical Physics

SUNNY Y. AU YANG

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface ix

1. Introduction 1
 1. Synthetic Microanalysis of Complex Composite Systems 1
 2. Topics, Theories, Categories 8
 3. Economics, Evolutionary Biology, Statistical Physics 21

PART I. EQUILIBRIUM 37

2. Theories of Composite Systems 39
 4. Organizational and Descriptive Levels of the World 39
 5. Deductive Construction of Small Systems 46
 6. Synthetic Microanalysis of Many-body Systems 54
 7. Idealizations, Approximations, Models 67
 8. Federal Versus Imperial Unity of Science 72
 9. Equilibrium and Optimization 77

3. Individuals: Constituents and Systems 84
 10. An Individual and Its Possibilities: The State Space 84
 11. The Integrity of the Topic of Statistical Mechanics 92
 12. The Unit of Evolution and the Unit of Selection 99
 13. Economic Individuals as Ideal Optimizers 109

4. Situated Individuals and the Situation 115
 14. Independent-individual Approximations 115
 15. Single Particles in the Self-consistent Field 121
 16. Price Takers in the Perfectly Competitive Market 132
 17. Fitness, Adaptedness, and the Environment 140

5. Interacting Individuals and Collective Phenomena 151
 18. An Intermediate Layer of Structure and Individuals 151
 19. Collective Excitations and Their Coupling 155
20. Strategic Competition and Industrial Organization 160

6. Composite Individuals and Emergent Characters 173
22. Emergent Characters of the System as a Whole 173
23. Self-organization in Phase Transitions 183
24. Adaptive Organization of Biological Systems 193
25. Inflation, Unemployment, and Their Microexplanations 203

PART II. DYNAMICS 211

7. The Temporality of Dynamic Systems 213
26. Temporality and Possibility 213
27. Processes and Time 215
28. Past, Present, Future 223

8. Complexity in the Temporal Dimension 228
29. Deterministic Dynamics: State-space Portraits 228
30. Stability, Instability, Bifurcation 237
31. Chaos and Predictability 242
32. Uniting Deterministic and Stochastic Concepts 248
33. The Foundation of Statistical Mechanics 255
34. Causality but Not Determinism 259

9. Stochastic Processes and Their Explanations 269
35. The Calculus of Probability and Stochastic Processes 269
36. Deterministic and Stochastic Models of Business Cycles 277
37. The Survival of the Fittest or the Luckiest? 285
38. Causality and Randomness in Statistical Mechanics 291
39. Probability but Not Tychism 299

10. Directionality, History, Expectation 313
40. Causality and Temporal Asymmetry 313
41. Narratives and Theories in Natural History 323
42. Dynamic Optimization, Expectation, Uncertainty 334

11. Epilogue 341
43. A Look Backward and Forward 341

Notes 347
Bibliography 379
Name Index 391
Subject Index 395