Günther J. Wirsching

The Dynamical System Generated by the 3n+1 Function

Springer
THE DYNAMICAL SYSTEM
ON THE NATURAL NUMBERS
GENERATED BY THE $3n + 1$ FUNCTION

Table of Contents

Introduction 1

Chapter I. Some ideas around $3n + 1$ iterations 10
1. The problem 10
2. About the origin of the problem 11
3. Empirical investigations and stochastic models 12
4. Related functions and generalizations 13
5. Some formulae describing the iteration 17
6. Numbers with finite stopping time 19
7. Asymptotics of predecessor sets 21
8. Consecutive numbers with the same height 21
9. Cycles 22
10. Binary sequences and 2-adic analysis 24
11. Reduction to residue classes and other sets 27
12. Formal languages 27
13. Functional equations 28
14. A continuous extension to the real line 29

Chapter II. Analysis of the Collatz graph 31
1. Directed graphs and dynamical systems on \mathbb{N} 33
 Directed graphs 33
 The Collatz graph 36
 The size of a subset of \mathbb{N} 37
2. Encoding of predecessors by admissible vectors 38
 Encoding a path in the Collatz graph 38
 Concatenation of integer vectors 39
 Tracing back integer vectors in the rationals 40
 Admissible integer vectors 42
3. Some properties of admissible vectors 45
 Recognizing admissible vectors 45
 Extending admissible vectors 45
 Similar integer vectors 47
THE DYNAMICAL SYSTEM GENERATED BY THE $3n + 1$ FUNCTION

Recurrent patterns in the Collatz graph 48

4. Counting functions and an estimate 51
 Counting functions for admissible vectors 51
 Counting predecessors of given size 53
 The error of the estimate 55

5. Some restricted predecessor sets 56
 The odd predecessors 56
 The pruned Collatz graph 58
 Pruned counting functions 59
 Inductive construction of the pruned counting functions 60
 Odd predecessors in the pruned Collatz graph 61

6. Comparison with other approaches 63
 Uniform bounds 63
 Crandall’s approach 65
 Crandall’s estimate 67
 Sander’s estimate 71
 Minorant vectors of Applegate and Lagarias 73

Chapter III. 3-adic averages of counting functions 76
1. Basics of 3-adic numbers 77
2. The estimating series 79
 Counting functions on 3-adic numbers 79
 The sequence of estimating series 80
 Ill-behaviour of the estimating series 81
3. The averaged estimating series 83
 A formula for 3-adic averages 83
 The averaged estimating series 84
4. Maximal terms 85
 The candidate for the maximal term 86
 An estimate for the remaining terms 88
 First order asymptotics of maximal terms 90
5. Asymptotic behaviour of the averaged sums 91
 A naive approach 92
 The theorem 92
 Why $3n + 1$ and not $pn + 1$? 95

Chapter IV. An asymptotically homogeneous Markov chain 96
1. Small vectors and a Cauchy product 97
 The structure of similarity classes 98
 Partitions 98
 Counting functions for small admissible vectors 100
 A Cauchy product 102
2. Renormalization 103
 Construction of the second factor of the state space 103
 Construction of the first factor 104
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The state space and the pull-backs</td>
<td>106</td>
</tr>
<tr>
<td>The normalization factor</td>
<td>107</td>
</tr>
<tr>
<td>3. Transition probabilities</td>
<td>107</td>
</tr>
<tr>
<td>Basic notions for Markov chains</td>
<td>108</td>
</tr>
<tr>
<td>Domains of dependence and domains of transition</td>
<td>109</td>
</tr>
<tr>
<td>The integral kernels</td>
<td>111</td>
</tr>
<tr>
<td>4. Vague convergence of the transition measures</td>
<td>112</td>
</tr>
<tr>
<td>5. The limiting transition probability</td>
<td>117</td>
</tr>
<tr>
<td>The invariant density</td>
<td>117</td>
</tr>
<tr>
<td>A relation to Cantor's set</td>
<td>119</td>
</tr>
<tr>
<td>6. Some further remarks</td>
<td>120</td>
</tr>
<tr>
<td>Chapter V. Mixing and predecessor density</td>
<td>123</td>
</tr>
<tr>
<td>1. Locally covering triples</td>
<td>124</td>
</tr>
<tr>
<td>The basic estimate for locally covering triples</td>
<td>124</td>
</tr>
<tr>
<td>The normalized remainder map</td>
<td>125</td>
</tr>
<tr>
<td>3-adic balls and spheres</td>
<td>127</td>
</tr>
<tr>
<td>Globally covering triple</td>
<td>129</td>
</tr>
<tr>
<td>2. A predecessor density criterion</td>
<td>130</td>
</tr>
<tr>
<td>3. Consequences</td>
<td>134</td>
</tr>
<tr>
<td>A sufficient condition for positive density</td>
<td>134</td>
</tr>
<tr>
<td>Uniform positive density</td>
<td>135</td>
</tr>
<tr>
<td>Non-existence of globally optimal sequences</td>
<td>136</td>
</tr>
<tr>
<td>The reduction theorem</td>
<td>137</td>
</tr>
<tr>
<td>Bibliography</td>
<td>141</td>
</tr>
<tr>
<td>Index of authors</td>
<td>146</td>
</tr>
<tr>
<td>List of symbols</td>
<td>149</td>
</tr>
<tr>
<td>Index</td>
<td>152</td>
</tr>
</tbody>
</table>