Practical Well Planning and Drilling Manual
## Contents

Preface xi
Acknowledgments xiii
Introduction xv
List of Acronyms xix

### Section 1: Well Design

1.1. Preliminary Work for the Well Design 3
   1.1.1. Planning Process Overview 3
   1.1.2. Data Acquisition and Analysis 4

1.2. Well Design: General 17

1.3. Precompletion and Completion Design 21
   1.3.1. How the Completion Relates to the Well Design 22
   1.3.2. Monobore Completions 25
   1.3.3. Multiple String Completions 28
   1.3.4. Completion Fluids 29
   1.3.5. Brines 30
   1.3.6. Points to Check on the Completion Design 34

1.4. Casing Design 37
   1.4.1. General Points and Definitions 38
   1.4.2. Hole and Casing Sizes: Considerations 41
   1.4.3. Hole and Casing Sizes: Selection 42
   1.4.4. Pore Pressures and Fracture Gradients 43
   1.4.5. Casing Shoe Depth Determination: General Points 52
   1.4.6. Individual Casing Points 55
   1.4.7. Mechanical Properties of Steel 58
   1.4.8. Safety Factors 61
   1.4.9. Factors Affecting Pipe Yield Strengths 64
   1.4.10. Methods of Applying Buoyancy Effects 66
   1.4.11. Casing Design Criteria: Definitions and Methods of Calculation 73
   1.4.13. Calculating Axial Loads 74
1.4.14. Calculating for Buckling (N_b) 82
1.4.15. Calculating Torsional Loads 86
1.4.16. Triaxial Stress Analysis 87
1.4.17. Design for Casing off Massive Salt Formations 88
1.4.18. Casing Properties and Other Considerations 88
1.4.19. Material Grades 89
1.4.20. Casing Connections 91
1.4.21. Casing and Liner Accessories 93
1.4.22. Wellheads: General Descriptions 97
1.4.23. Casing Design Criteria 99
1.4.24. References for Casing Design 99

1.5. Directional Design 109
   1.5.1. Planning the Wellpath 110
   1.5.2. Dogleg Severity Limits—Combined Buildup and Turn Rate 112
   1.5.3. BHA Performance Considerations 117
   1.5.4. Horizontal Well Design Considerations 118
   1.5.5. Multilateral Wellbores 120
   1.5.6. Slant Rig Drilling 120
   1.5.7. Targets and Wellpath 121

SECTION 2: WELL PROGRAMMING 123

2.1. Preliminary Work for the Drilling Program 125
   2.1.1. Drilling Program Checklist 125
   2.1.2. Technical Justification 132
   2.1.3. Formatting the Drilling Program 134
   2.1.4. Time Estimates 135
   2.1.5. Cost Estimates 135

2.2. Well Control 147
   2.2.1. Shallow Gas 147
   2.2.2. Drilling with a BOP Stack 153
   2.2.3. High Pressure, High Temperature Wells (HPHT) 155
   2.2.4. Well Control in High-Angle and Horizontal Wells 157
   2.2.5. References for Well Control—Shallow Gas 158

2.3. Directional Planning 159
   2.3.1. Downhole Tools Affecting Directional Control 159
   2.3.2. Directional Measurement and Surveying 165
   2.3.3. Kicking Off the Well 175
   2.3.4. Drilling the Tangent Section 179
   2.3.5. Dropping Hole Angle 180

2.4. Drillbit Selection, Parameters, and Hydraulics 183
3.5. Cementing

3.5.1. Mud Conditioning for Maximum Displacement 400
3.5.2. Slurry Mixing Options 400
3.5.3. Preparation for Cementing 401
3.5.4. Cement Displacement 402
3.5.5. Post-Job Evaluation 404
3.5.6. Field Cementing Quality Control Procedures 405

3.6. Drill Bits

3.6.1. Alternative Bit Choices 409
3.6.2. Drilling Parameters 411
3.6.3. Mud Motors, Steerable Systems, and Turbines 415
3.6.4. Monitoring Bit Progress while Drilling 415
3.6.5. When to Pull the Bit 416
3.6.6. Post-Drilling Bit Analysis 417

3.7. Directional Drilling

3.7.1. Rotary Bottom Hole Assemblies—General Points 423
3.7.2. Preventing Keyseating 425
3.7.3. Directional Jetting—Practical Considerations 426
3.7.4. Single Shot Surveys—General Points 427
3.7.5. Magnetic Single Shot Survey Tool 428
3.7.6. Totco Single Shot Survey Tool 430
3.7.7. Gyro Multishot Surveys 430

3.8. Writing the Final Well Report

3.8.1. Suggested Final Well Report Structure 432

Appendix 1: Calculating Kick Tolerances 441

Appendix 2: Formation Integrity Test Recommended Procedure 447

Appendix 3: Information Sources 451

Appendix 4: Drilling Equipment Lists by Operation 453

Appendix 5: Conductor Setting Depth for Taking Returns to the Flowline 463

Glossary 465

Index 511