Contents

Introduction ... 1

The Minimum on Mechanics ... 3
 External Loads and Internal Stresses ... 3
 Thermal Expansion and Thermal Stresses ... 11
 The Finite Element Method (FEM) .. 12
 The Component Killers: Notches and Notch Stresses 14
 Crack Propagation .. 20
 Overview of the Mechanics ... 21

What Is a Good Mechanical Design? ... 25

The Axiom of Uniform Stress and How Computer Methods
 Derive from It .. 29
 Notches Without Notch Stresses? .. 29
 Computer-Aided Optimization – Growth in the Computer 32
 Soft Kill Option: Away with the Ballast! ... 35
 Stress-Controlled E-Modulus Distribution ... 37
 The Stress-Increment-Controlled SKO Method ... 39
 Presentation of the Methods at a Glance ... 41

The Mechanics of Trees and the Self-Optimization of Tree Shape 43
 The Controlling Mechanisms and Their Effect on the Tree 43
 Apical Dominance: The Top Rules ... 44
 Geotropism: Stand Up Straight! ... 44
 Phototropism: The Quest for Light ... 49
Fibre Kinking: The Beginning of the End ... 160

Can Trees Really Not Shrink? .. 163

Bones: Ultra-Light and Very Strong by Continuous Optimization of Shape ... 165

Bone Design: Selected Examples ... 167
 The Femur: Heavily Loaded and Successful 167
 Healing of a Femur Fracture ... 170
 The Consequences of Hip Prostheses for the Femur 172
 The Vertebral Arch – A Weak Point? .. 175
 Trabecular Bone: Micro-Frameworks as Pressure Distributor,
 Dash Pot and Light-Weight Internal Architecture 177
 Trabecula Axis and Force Flow: The Fear of Bending Load 177
 Drifting and Rotating: The Wanderings of the Trabeculae in the
 Search for Pure Axial Loading .. 178

Bony Frameworks and Tree Frameworks Compared 183
 Trabeculae and Air-Rooters .. 183
 The Reasons Why Bones Are Better at Adapting Their Shape 184

Claws and Thorns: Shape-Optimized by Success in the Lottery of Heredity ... 185
 The Tiger’s Claw ... 185
 Thorn Shape and Load Direction ... 187

Biological Shells ... 191
 What Are Shell Structures? .. 191
 Why a Shell Theory Is Inadequate for Shape Optimization 192
 Tortoises and Nuts ... 195

Bracing: Ultra-Light but Highly Specialized 199
 The Advantages of Bracing and Its Sensitivity to Loading
 Inappropriate to the Design ... 199
 Bracing at the Hip-Joint and in Trees on Eroding Sites:
 A Functional Identity .. 201
Buttress Roots from the Standpoint of Bracing.................................202

Shape Optimization by Growth in Engineering Design.................209
 Plane or Rotationally Symmetrical Models...............................209
 The Orthopaedic Screw..209
 Beam Shoulders...213
 Shape Optimization of Three-Dimensional Components...............214
 Shaft with Rectangular Aperture..214
 Frameworks..217

Unity in Diversity: Design Target and Realization......................221

Critique on Optimum Shape: Sensitization by Specialization........223

Outlook: Ecodesign and Close-to-Nature Computer Empiricism..........225

New Examples of Application in Self-Explanatory Illustrations........227

References...271

Subject Index..273