Contents

Preface vii

I The Scalable Structure of Information

1 The New Mathematical Engineering 3
 1.1 Introduction 3
 1.2 Trial and Error in the Twenty-First Century 6
 1.3 Active Mathematics 6
 1.4 The Three Types of Bandwidth 7
 1.5 An Introduction to This Book 10

2 Good Approximations 12
 2.1 Approximation and the Perception of Reality 12
 2.2 Information Gained from Measurement 16
 2.3 Functions and Their Representation 25

3 Wavelets: A Positional Notation for Functions 30
 3.1 Multiresolution Representation 30
 3.2 The Democratization of Arithmetic: Positional Notation for Numbers 32
 3.3 Music Notation as a Metaphor for Wavelet Series 34
 3.4 Wavelet Phase Space 35
II Wavelet Theory

4 **Algebra and Geometry of Wavelet Matrices**

4.1 Introduction .. 39
4.2 Wavelet Matrices ... 41
4.3 Haar Wavelet Matrices 47
4.4 The Algebraic and Geometric Structure of the Space of Wavelet Matrices ... 55
4.5 Wavelet Matrix Series and Discrete Orthonormal Expansions .. 80

5 **One-Dimensional Wavelet Systems**

5.1 Introduction .. 86
5.2 The Scaling Equation ... 86
5.3 Wavelet Systems .. 105
5.4 Recent Developments: Multiwavelets and Lifting .. 137

6 **Examples of One-Dimensional Wavelet Systems**

6.1 Introduction to the Examples 140
6.2 Universal Scaling Functions 141
6.3 Orthonormal Wavelet Systems 146
6.4 Flat Wavelets .. 156
6.5 Polynomial-Regular and Smooth Wavelets 157
6.6 Fourier-Polynomial Wavelet Matrices 163

7 **Higher-Dimensional Wavelet Systems**

7.1 Introduction .. 165
7.2 Scaling Functions .. 174
7.3 Scaling Tiles .. 181
7.4 Orthonormal Wavelet Bases 183

III Wavelet Approximation and Algorithms

8 **The Mallat Algorithm**

8.1 Introduction .. 191
8.2 Wavelet Series and the Mallat Algorithm 192
8.3 The Mallat Algorithm for Periodic Data 196

9 **Wavelet Approximation**

9.1 Introduction .. 202
9.2 Vanishing Moments of Wavelet Bases 203
9.3 Sampling, Reconstruction, and Approximation 206
9.4 Newton's Method and the Problem of Constructing the Orthogonal Coifman Scaling Function 213
9.5 Biorthogonal Coifman Wavelet Systems 224
9.6 Comparison with Daubechies Wavelet Systems 233
10 Wavelet Calculus and Connection Coefficients 236
10.1 An Introduction to Connection Coefficients 236
10.2 Fundamental Properties of Connection Coefficients for First-Order Differentiation 239
10.3 Wavelet Differentiation and Classical Finite Difference Operators 249
10.4 Algorithms for Computing Connection Coefficients 257

11 Multiscale Representation of Geometry 266
11.1 Introduction 266
11.2 Differential Forms and Distributions 267
11.3 A Multiresolution Representation of Boundary Integration 269
11.4 Elements of Geometric Measure Theory 271
11.5 The Wavelet Representation of Integration over Domains and Their Boundaries 273

12 Wavelet-Galerkin Solutions of Partial Differential Equations 280
12.1 Introduction 280
12.2 Estimates for Wavelet-Based Approximations to Elliptic Partial Differential Equations 283
12.3 The Dirichlet Problem 290
12.4 The Neumann Problem for Elliptic Operators: Variational Formulations 299
12.5 Iterative Multiscale Methods for Elliptic Boundary Value Problems 308
12.6 A Wavelet-Based Multigrid Iterative Method for an Anisotropic Partial Differential Equation 326

IV Wavelet Applications

13 Wavelet Data Compression 343
13.1 Understanding Compression 343
13.2 Image Compression 345
13.3 Transform Image Compression Systems 348
13.4 Wavelet Image Compression 350
13.5 Embedded Coding and the Wavelet-Difference-Reduction Compression Algorithm 356
13.6 Multiresolution Audio Compression 360
13.7 Denoising Algorithms 364

14 Modulation and Channel Coding 366
14.1 Understanding Channel Coding 366
14.2 Multicarrier Communication Systems 369
14.3 Wavelet Filter Design 370
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4</td>
<td>Waveform Design</td>
<td>373</td>
</tr>
<tr>
<td>14.5</td>
<td>Wavelet Channel Coding</td>
<td>375</td>
</tr>
<tr>
<td>14.6</td>
<td>The Wavelet Channel Coding Algorithm</td>
<td>376</td>
</tr>
<tr>
<td>14.7</td>
<td>Wavelet Channel Coding and Digital Modulation</td>
<td>383</td>
</tr>
<tr>
<td>14.8</td>
<td>Performance of Wavelet Channel Coding</td>
<td>384</td>
</tr>
<tr>
<td>14.9</td>
<td>The DWMT Modem</td>
<td>386</td>
</tr>
<tr>
<td>14.10</td>
<td>Applications and Test Results</td>
<td>395</td>
</tr>
</tbody>
</table>

References 397

Index 413