Numerical Modelling in Applied Geodynamics

Jiří Nedoma
Institute of Computer Science
Prague, Czech Republic

JOHN WILEY & SONS
Chichester • New York • Weinheim • Brisbane • Singapore • Toronto
Contents

Preface xvii
Acknowledgements xxi
List of Notation xxiii

PART I GEODYNAMICS: AN INTRODUCTION 1

1 Geodynamics of the Earth: General Introduction 3
 1.1 Introduction 3
 1.2 Global Model of the Earth 8
 1.2.1 Geodynamic Processes in the Earth's Core and Mantle, and their Causes 8
 1.2.2 Geodynamic Processes in the Upper Parts of the Earth 11
References 20

PART II TOOLS TO FUNCTIONAL AND NUMERICAL ANALYSES 23

2 An Introduction to Variational Methods and Related Problems 25
 2.1 A Brief Survey of Functional Analysis 25
 2.1.1 Vector and Metric Spaces 25
 2.1.2 Inner Product, Banach and Hilbert Spaces 27
 2.1.3 Operators and Functionals 28
 2.1.4 Dual Spaces, Weak Convergence and Reflexivity 30
 2.1.5 Physical Significance of the Inner Products and the Norms 31
 2.2 Introduction to the Theory of Spaces 32
 2.2.1 Hilbert Spaces 32
 2.2.2 Operators and Functionals in Hilbert Spaces 34
 2.2.3 Sobolev Spaces 36
 2.2.4 Survey of the Theory of Distribution 44
 2.2.5 Some Fundamental Theorems 47
 2.3 Fundamentals of Convex Analysis 52
 2.3.1 Convex Sets and Convex Functions 52
CONTENTS

2.3.2 Minimization of Functionals 52
2.3.3 Minimization of Quadratic Functionals 56
2.3.4 Theory of Duality, Saddle Points and Lagrange Multipliers 58
2.3.5 Penalty Methods 60

2.4 Fundamentals of Variational Equalities and Inequalities and their Numerical Approximations 61

2.4.1 Elliptic Variational Inequalities and Equalities — the Continuous Problem 61
2.4.2 Elliptic Variational Inequalities and Equalities — The Approximate Problem 65
2.4.3 Application of Penalty Methods to Variational Inequalities 69

2.5 Quadratic Functionals in \mathbb{R}^N 70

2.5.1 Tools from the Quadratic Programming 70
2.5.2 Modern Iterative Methods 76

2.5.2.1 Method of the Steepest Descent or the Gradient Method 76
2.5.2.2 The Conjugate Gradient Method or the CG-Method 80
2.5.2.3 The Preconditioned Conjugate Gradient Method or the PCG-Method 84
2.5.2.4 Conjugate Gradient Methods for Non-Symmetric Problems 85

2.5.3 The Multi-Grid Method 88

2.6 Quadratic Functionals with Constraints in \mathbb{R}^n 91

2.6.1 Introduction 91
2.6.2 Problems of Quadratic Programming 91
2.6.3 Lagrange Multipliers and Dual Problem 97
2.6.4 The Generalized Gradient Method and the Gradient Projection Method 100
2.6.5 The Active Set Method 101

2.7 Nonquadratic Functionals in \mathbb{R}^n and Iterative Methods for the Solution of Systems of Non-Linear Equations 102

2.7.1 Introduction 102
2.7.2 The Newton Method and its Modifications 103
2.7.3 Generalized Linear Methods 105
2.7.4 Non-Linear Jacobi-, Gauss-Seidel-, SOR-, Peaceman-Rachford-Newton Methods 107

2.7.5 Modern Non-Linear Iterative Methods 109

2.7.5.1 Introduction 109
2.7.5.2 Descent Methods 110
2.7.5.3 Conjugate Gradient Method 112
2.7.5.4 The Gauss-Newton Method 112

References 113

PART III NUMERICAL MODELS OF REFORMATION OF GEOLOGICAL BODIES 117

3 Deformation of Geological Bodies and Stress-Strain Measurements In Situ 119

3.1 Introduction to the Mathematical Theory of Continuum Mechanics 119
3.1.1 Brief Survey of Mathematical Thermodynamics 119
3.1.1.1 The First Law of Thermodynamics 120
CONTENTS

3.1.1.2 Principle of Carathéodory and Formulation of the
Second Law of Thermodynamics 124
3.1.1.3 The Reversible and Irreversible States 130
3.1.1.4 Some Theorems 136
3.1.1.5 Phase Changes of the First and Second Orders 140
3.1.2 Introduction to the Tensor Analysis 143
3.1.3 Field Equations of Continuum Mechanics 146
3.1.3.1 Kinematics of Deformable Continuum 146
3.1.3.2 Conservation Laws in Their Integral and Differential Forms 149
3.1.3.3 Stress Tensor 154
3.1.3.4 Strain and Strain Rate Tensors 160
3.1.4 Constitutive Laws in the Theory of Elasticity and Visco-Elasticity 163
3.1.4.1 Constitutive Laws of Hookean Elasticity 163
3.1.4.2 Constitutive Laws of Linear Visco-Elasticity 166
3.1.5 Constitutive Laws in the Theory of Plasticity 167
3.1.6 Basic Boundary Value Problems of the Linear Theory of Elasticity 170
3.1.7 Variational Principles in the Theory of Elasticity 171
3.1.8 The Space of Functions with Finite Energy and Some Theorems 174
3.2 Deformation of Geological Blocks and their Local Regions:
Applications in Practice 176
3.2.1 Simple Models of Deformation of Geological Blocks based on Boundary
Value Problems of Linear Elasticity 176
3.2.2 Simple Models of Deformation of Geological Blocks based on Boundary
Value Problems in the Deformation Theory of Thermo-Plasticity 179
3.2.2.1 Formulation of the Problem 179
3.2.2.2 Variational Formulation of the Problem 180
3.2.2.3 Numerical Solution 187
3.3 Stress-Strain Measurement In Situ and Analysis of the Measured Data 194
3.3.1 Problems, Approaches, and a Short Survey of Instrumentation 194
3.3.2 On the Sensibility of the String Tensometric Method for the Stress-Strain
Monitoring In Situ and the Overcoring Method 197
3.3.2.1 Introduction 197
3.3.2.2 Principle of the String Tensometric Method, and
Sensitivity of the Method 197
3.3.2.3 Influences Acting on the Sensitivity of the String 199
3.3.2.4 Exciting Force with a Random Phase 207
3.3.2.5 Problem of the Reliability of Measuring Elements 207
3.3.2.6 In-Situ Stress Measuring System based on String Tensometry 208
3.3.3 Mathematical Models of In-Situ Stress-Strain Measurements based
on the Method of Homogenization 211
3.3.3.1 Introduction 211
3.3.3.2 Formulation of the Problem and the Main Results 211
References 246

PART IV NUMERICAL MODELS OF PLATE TECTONICS 251

4 Mathematical Models of Geodynamic Processes in the
Lithosphere and of Plate Tectonics 253
4.1 Introduction 253
CONTENTS

4.2 Geodynamic Processes in the Upper Parts of the Earth: An Introduction 256
 4.2.1 Rheology of the Lithosphere and of the Upper Mantle 257
 4.2.2 Tectonic Evolution of Rift Zones 271
 4.2.3 Tectonic Evolution of Collision Zones 278
 4.2.3.1 Mechanics of Subducted Lithosphere 280

4.3 Model Problems of Plate Tectonics 299
 4.3.1 Introduction 299
 4.3.2 Elastic, Thermo-Elastic and Thermo-Visco-Elastic Stress-Strain Analysis of the Geodynamic Mechanism 300
 4.3.2.1 Elastic and Thermo-Elastic Cases 300
 4.3.2.2 The Thermo-Visco-Elastic Case 309
 4.3.3 Thermo-Elasto-Visco-Plastic Stress-Strain Analysis of the Geodynamic Mechanism 311
 4.3.3.1 Elasto-Plastic Rocks: Deformation Theory of Thermo-Plasticity 312
 4.3.3.2 Perfectly Plastic and Rigid Perfectly Plastic Rocks Under Geothermal Field 313
 4.3.3.3 Elasto-Visco-Plastic Rocks Under Geothermal Field 314
 4.3.3.4 Lithospheric and Upper Mantle Rocks as a Rigid Visco-Plastic Fluid Under the Geothermal Field 316

References 318

5 Mathematical Models of the Rift Zones 323
 5.1 Introduction 323
 5.2 Models based on Thermo-Bingham Rheology 323
 5.2.1 Mathematical Model of the Rift Zone based on the Thermo-Elasto-Visco-Plastic Bingham Fluid Without Melting and Recrystallization 323
 5.2.1.1 Mathematical Formulation and Variational Solution of the Problem 325
 5.2.1.2 Finite Element Approximation 333
 5.2.1.3 Algorithm 338
 5.2.2 Models based on the Stefan-like Problem and Visco-Plastic Bingham Rheology: the Case with Melting and Solidification 339

References 341

6 Simple Models of Collision and Subduction Zones 343
 6.1 Introduction 343
 6.2 Mathematical Models based on Linear Elasticity 343
 6.3 Simple Models of Collision and Subduction Zones based on the Basic Boundary Value Problems of Elasticity 346
 6.3.1 Formulation of the Model Problem 346
 6.3.2 Variational Formulations and Weak Solutions of Primary and Dual Problems in Linear Elasticity 348
 6.4 Models based on the Analysis of Periodic Geological Structures: Method of Homogenization 354
 6.4.1 Formulation of the Problem and the Main Results 354
6.5 Models of Collision Zones based on the Basic Initial Boundary Value Problems of Thermo-Visco-Elasticity

6.5.1 Introduction

6.5.2 Models based on Linear Thermo-Visco-Elasticity with Short Memory
 6.5.2.1 Dynamic Case
 6.5.2.2 Quasi-Static Case

References

7 Realistic Mathematical Models of Collision Zones based on Variational Inequalities

7.1 Models of Collision Zones based on Contact Problems with or without Friction in Linear Elasticity
 7.1.1 Introduction
 7.1.2 The Models
 7.1.3 Boundary Conditions
 7.1.4 Classical Formulation of the Problem
 7.1.5 Variational Formulation and Weak Solution
 7.1.6 Numerical Solution
 7.1.7 Construction of the Stiffness Matrix and of the Right Hand Side Vector

7.2 Mathematical Models of Plate Tectonics based on Contact Problems with Friction in Thermo-Elasticity
 7.2.1 Quasi-Coupled Plate Tectonic Models based on Contact Problems with Friction: The Coercive Case
 7.2.1.1 Introduction
 7.2.1.2 Formulation of the Problem
 7.2.1.3 Variational Solution of the Problem
 7.2.1.4 Numerical Solution
 7.2.1.5 Algorithm
 7.2.2 Quasi-Coupled Plate Tectonic Models based on Contact Problems with Friction: the Semi-Coercive Case
 7.2.2.1 Introduction
 7.2.2.2 Variational Formulation and Weak Solution
 7.2.2.3 Finite Element Approximation

7.3 Mathematical Models of Plate Tectonics based on Coupled Contact-Two-Phase Stefan-Like Problems in Linear Thermo-Elasticity: Problems of Recrystallization of Rocks in Subduction and Collision Zones
 7.3.1 Introduction
 7.3.2 Numerical Solutions of Coupled Two-Phase Stefan-Like-Contact Problems with Friction Arising from an Implicit Time Discretization: The Coercive Case
 7.3.2.1 The Model Problem
 7.3.2.2 Variational Formulation of the Elliptic Problem Arising from an Implicit Time Discretization
 7.3.2.3 The Finite Element Approximation
 7.3.2.4 Algorithm

7.4 Models of Collision Zones based on a Coupled Contact-Stefan-Like Problem Arising from the Time Discretization in Deformation Theory of Thermo-Plasticity
 7.4.1 Introduction
 7.4.2 Formulation of the Coupled Field Problem
7.4.3 Variational Formulation of the Problem 454
7.4.4 Numerical Solution 461

7.5 Computer Implementation of the Algorithms for Contact Problems 471
7.5.1 Introduction 471
7.5.2 Conjugate Gradient Method with Constraints 473
7.5.3 Elimination Method 478

7.6 Computer Implementation of the Algorithms for Coupled Contact-Stefan-Like Problems 482
7.6.1 Introduction 482
7.6.2 Algorithm 483
7.6.2.1 Basic Idea of the Algorithm 483
7.6.2.2 Non-Linear Solution for the Stefan Part of the Problem based on Non-Linear Conjugate Gradient Methods 485
7.6.2.3 Solutions for the Contact Part of the Problem based on Constrained Conjugate Gradient Methods 488

References 489

8 Numerical Simulation of Tectonic Evolution of Collision and Subduction Zones 493

8.1 Simulation of Tectonic Processes in the Time Domain:
Origin of the Earthquake 493
8.1.1 Introduction 493
8.1.2 The Model and Constituting Equations 494
8.1.3 Variational Solution of the Problem with the Given Friction 499
8.1.4 Numerical Model: Numerical Solution of Discretized Coupled Equations 501
8.1.5 Algorithm and Mechanisms of Earthquakes 503
8.1.5.1 The Case of a Crack Propagation 505
8.1.5.2 The Case of Coulombian Friction Forces Acting on the Contact Boundary 506

8.2 Numerical Modelling of Interplate Deformation in the Central Aleutian Arc System: Tectonic Stresses in the Lithosphere 507
8.2.1 Introduction 507
8.2.2 Numerical Results 510
8.2.3 Vertical Motions 512
8.2.4 Interplate Stresses 512

8.3 Model of the Carpathian Continent/ Continent Collision 514
8.3.1 Geodynamic Model of Tectonics of the Western Carpathians 514
8.3.1.1 Introduction 514
8.3.1.2 Model of the Western Carpathians 519
8.3.2 Numerical Verification of Geodynamic Processes in the Western Carpathians 521

8.4 Geodynamic Evolution of the Himalayan Collision Region and the Intraplate Tectonics in the Northern Indian Ocean, and Geodynamic Models of the Himalaya and the Indian Plate Margin 522
8.4.1 Introduction 522
8.4.2 Geological and Tectonic Characterization of the Himalayas and the Tibetan Plateau 526
8.4.2.1 The Siwalik Belt 526
8.4.2.2 The Lesser and High Himalayas 527
8.4.2.3 The Tibetan Plateau 530
8.4.3 Geodynamic Model of the Himalayas, Profile — Nanda Devi 531
CONTENTS

8.5 Eastern Himalaya and Northern Burma, and Surrounding Regions 540
 8.5.1 Introduction 540
 8.5.2 Seismo-tectonic Activity of the NE Indian Plate 541
 8.5.3 Seismo-tectonic Activity of the Eastern Himalayan Area and Surrounding Areas 543
 8.5.4 Seismo-tectonic Activity in Burma 544
 8.5.5 Seismo-tectonic Activity in the Area of South China 546
 8.5.6 Geodynamic Model of the Andaman Arc System: Profile across North Andaman Island, Barren-Narcondam Volcanic Arc System and Burmese Plate 547
8.6 Geodynamic Processes in Some Volcanically Active Areas 553
 8.6.1 Introduction 553
 8.6.2 Mechanics of the Subducted Lithosphere in the Hot Spot Areas, Mediterranean Area and Japanese Area 554
8.7 Programme on the Assessment of Earthquake Hazard for Areas of Catastrophic Earthquakes 560
 8.7.1 Some Rudimentary Definitions and Present Studies of Seismic Hazard 560
 8.7.2 Objectives Qualifying the Programme 561
 8.7.3 Assessment of Seismic Hazard and Earthquake Prediction-Proposed Programme 561
 8.7.4 Assessment of Hazard of Critical Structures-Proposed Programme 563
 8.7.5 Mitigation of Risk 564
References 565

PART V SOME MATHEMATICAL PROBLEMS OF GEOPHYSICAL FIELDS 573

9 Mathematical Models of the Geothermal Field of the Earth 575
 9.1 Introduction 575
 9.2 Thermal Properties of Rocks and Thermal Regime inside the Earth 575
 9.3 Steady-State Thermal Field of the Earth 597
 9.3.1 Introduction 597
 9.3.2 The Linear Steady-State Case 599
 9.3.2.1 Introduction 599
 9.3.2.2 Numerical Solution 603
 9.3.2.3 Algorithm 606
 9.3.3 The Non-Linear Steady-State Geothermal Models of the Earth 609
 9.3.3.1 Introduction 609
 9.3.3.2 Numerical Solution 613
 9.4 Evolution Models of the Geothermal Field of the Earth 620
 9.4.1 Introduction 620
 9.4.2 The Model Governing Equations and Initial and Boundary Value Conditions 621
 9.4.3 Geothermal Models: Linear Case 623
 9.4.3.1 Mathematical Analysis of the Continuous Part of the Problem 623
 9.4.3.2 Numerical Solution 628
 9.4.4 Evolution Geothermal Models: Non-Linear Case 635
 9.4.4.1 Mathematical Analysis of the Continuous Part of the Problem 635
 9.4.4.2 Numerical Solution 637
9.5 Thermal Models of the Earth's Interior with Phase Transition Zones

9.5.1 Introduction 642
9.5.2 Classical Formulation of the Non-Linear Two-Phase Stefan Problem 643
9.5.3 Variational Formulation 646
9.5.4 Numerical Solution 653

References 658

10 Mathematical Problems of the Earth's Electromagnetic Field. Numerical Analyses of the Magneto-Telluric Models of the Earth 663

10.1 Introduction 663

10.2.1 Introduction 667
10.2.2 Physical Formulation. Mathematical Models in Frequency and Time Domains 667
10.2.2.1 The Frequency Domain Approach 673
10.2.2.2 Time Variable Inducing Magnetic Field and the Time Domain Approach 680
10.2.3 Magneto-Telluric Field. Mathematical Models and Variational Solutions 682
10.2.3.1 Mathematical Formulation of the Problem in the Frequency and Time Domains 682
10.2.3.2 Variational Formulation. Existence and Uniqueness of the Solution of a Model Magneto-Telluric Problem. The Frequency and Time Domains 683
10.2.3.3 Numerical Solutions of Magneto-Telluric Model Problems. The Frequency and Time Domain 691

10.3 Variational Problems in the Theory of Electromagnetic Field. Electromagnetic Induction 702
10.3.1 Introduction 702
10.3.2 Electromagnetic Induction in a Conductive Layer 707

References 712

11 Some Mathematical Problems of Seismic Wave Propagation 715

11.1 Introduction 715
11.2 Theory and Physical Formulation of the Problem 718
11.3 Propagation of Pseudo P and SV Waves in an Inhomogeneous, Generally Anisotropic Media Generated by Harmonic Line Sources 732
11.3.1 Introduction 732
11.3.2 Formulation of the Problem 732
11.3.3 Variational Formulation and Weak Solution 734
11.3.4 Numerical Solution 735
11.3.5 Algorithm 737
11.3.6 Models and their Classification 743
11.3.6.1 Model M1 — The Asthenosphere 743
11.3.6.2 Model M2 — The Asthenosphere between Two Halfspaces 744

References 772
12 Mathematical Problems of Global Geodynamic, Geomagnetic, Geothermal and Gravity Models of the Earth and Planets and a Global Plate Tectonic Hypothesis 767

12.1 Introduction 767

12.2 Global Geodynamic, Geomagnetic, Geothermal and Gravity Models of the Earth 768
12.2.1 Introduction 768
12.2.2 The Fundamental Equations of the Geodynamic Mechanisms 772
12.2.3 Discussion of Equations, Limits of their Validity and their Physical Consequences 780
12.2.3.1 The Case of Geodynamic Processes in the Core 780
12.2.3.2 The Case of Geodynamic Processes in the Mantle 783
12.2.3.3 Thermal Regime in the Core and in the Mantle of the Earth and their Structure 788

12.3 Geodynamic Processes in the Mantle 791
12.3.1 Introduction 791
12.3.2 Mathematical Models based on the Linear and Nonlinear Newtonian Fluid Rheology 792
12.3.2.1 Introduction 792
12.3.2.2 Models of Mantle Convection based on Numerical Analyses of the Navier-Stokes Problem in the Boussinesq Approximation 796
12.3.3 Mathematical Models based on the Thermo-Bingham Rheology 807
12.3.3.1 Introduction 807
12.3.3.2 Analysis of Geodynamic Processes in the Mantle based on Thermo-Bingham Approximation 811
12.3.3.3 Analysis of Geodynamic Processes in the Earth based on Coupled Stefan-Like Problems in a Thermo-Visco-Plastic Bingham Rheology 859

12.4 Mathematical Analysis of Geodynamic Processes in the Earth’s and Planet’s Interior. Global Geodynamic, Geomagnetic and Gravity Models 893
12.4.1 Governing Equations of Magnetodynamics of Incompressible Thermo-Bingham’s Fluid under the Gravity Effect 893
12.4.1.1 Introduction 893
12.4.1.2 Variational Formulation of the Problem 896

12.5.1 Introduction 911
12.5.2 The Model: Discussion of Properties of Rocks inside the Earth 912
12.5.3 The Model: Theory 917
12.5.3.1 Introduction 917
CONTENTS

12.5.3.2 Derivation of the System of Equations 917
12.5.3.3 Boundary Condition 923

12.6 Second Phase-Change Transition and the Planet Uranus Magnetic Field Anomaly 926
12.6.1 Introduction 926
12.6.2 Mathematical Model 926
12.6.3 Variational Formulation and Weak Solution of the Problem 928

12.7 Global Gravity Model of the Earth and of Planets 935
12.7.1 Introduction 935
12.7.2 Generalized Theory of Gravity 937
12.7.2.1 Introduction 937
12.7.2.2 Level Surfaces and Plumb Lines 941
12.7.2.3 Integral Equation for the Gravity Potential 943
12.7.2.4 The Anomalous Gravity Field 945
12.7.3 Gravity Field Outside the Earth 946

References 947

Index 955