Online Computation and Competitive Analysis

Allan Borodin Ran El-Yaniv
University of Toronto Technion – Israel Institute of Technology
Contents

Preface xiii

1 Introduction to Competitive Analysis: The List Accessing Problem 1
 1.1 Basic Ideas and Terminology 1
 1.2 The List Accessing Problem 4
 1.3 The Sleator–Tarjan Result 6
 1.4 The Potential Function Method 9
 1.5 Some Lower Bounds 10
 1.6 The List Factoring Technique 13
 1.7 Historical Notes and Open Questions 19

2 Introduction to Randomized Algorithms: The List Accessing Problem 23
 2.1 The Competitive Ratio of Randomized Algorithms 23
 2.2 Algorithm BIT 24
 2.3 Algorithm RMTF: Barely Random Versus Random 26
 2.4 List Factoring–Phase Partitioning Revisited 27
 2.5 COMB: An \(\frac{6}{5}\)-Competitive Algorithm 29
 2.6 Historical Notes and Open Questions 29

3 Paging: Deterministic Algorithms 32
 3.1 Some Paging Algorithms 33
 3.2 The \((h, k)\)-Paging Problem 34
 3.3 List Accessing Algorithms as Paging Algorithms 35
 3.4 LFD – An Optimal Offline Paging Algorithm 35
 3.5 Marking and Conservative Algorithms and the Competitiveness of LRU, CLOCK, FIFO, and FWF 36
 3.6 LIFO and LFU Are Not Competitive 39
 3.7 The Full Access Cost Model 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>Theory Versus Practice</td>
<td>41</td>
</tr>
<tr>
<td>3.9</td>
<td>Historical Notes and Open Questions</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>Paging: Randomized Algorithms</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Randomized Competitive Analysis</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>The Competitiveness of RANDOM</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>The MARK Algorithm</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>A Lower Bound for Randomized Paging Algorithms</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Historical Notes and Open Questions</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Alternative Paging Models: Beyond Pure Competitive Analysis</td>
<td>54</td>
</tr>
<tr>
<td>5.1</td>
<td>The Access Graph Model</td>
<td>54</td>
</tr>
<tr>
<td>5.2</td>
<td>Dynamic Access Graphs and Experimental Studies</td>
<td>65</td>
</tr>
<tr>
<td>5.3</td>
<td>Distributional Paging Models</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Historical Notes and Open Questions</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>Game Theoretic Foundations</td>
<td>78</td>
</tr>
<tr>
<td>6.1</td>
<td>Games in Extensive and Strategic Forms</td>
<td>78</td>
</tr>
<tr>
<td>6.2</td>
<td>Randomized Strategies: Mixed, Behavioral, and General</td>
<td>83</td>
</tr>
<tr>
<td>6.3</td>
<td>Equivalence Theorems for Linear Games and Games of Perfect Recall</td>
<td>89</td>
</tr>
<tr>
<td>6.4</td>
<td>An Application to Paging and Competitive Analysis</td>
<td>93</td>
</tr>
<tr>
<td>6.5</td>
<td>Historical Notes and Open Questions</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>Request–Answer Games</td>
<td>98</td>
</tr>
<tr>
<td>7.1</td>
<td>Request–Answer Games</td>
<td>98</td>
</tr>
<tr>
<td>7.2</td>
<td>Randomized Adversaries</td>
<td>102</td>
</tr>
<tr>
<td>7.3</td>
<td>Relating the Adversaries</td>
<td>104</td>
</tr>
<tr>
<td>7.4</td>
<td>Historical Notes and Open Questions</td>
<td>107</td>
</tr>
<tr>
<td>8</td>
<td>Competitive Analysis and Zero-Sum Games</td>
<td>109</td>
</tr>
<tr>
<td>8.1</td>
<td>Two-Person Zero-Sum Games</td>
<td>109</td>
</tr>
<tr>
<td>8.2</td>
<td>On Generalizations of the Minimax Theorem for Infinite Games</td>
<td>114</td>
</tr>
<tr>
<td>8.3</td>
<td>Yao’s Principle: A Technique for Obtaining Lower Bounds</td>
<td>115</td>
</tr>
<tr>
<td>8.4</td>
<td>Paging Revisited</td>
<td>120</td>
</tr>
<tr>
<td>8.5</td>
<td>Historical Notes</td>
<td>122</td>
</tr>
<tr>
<td>9</td>
<td>Metrical Task Systems</td>
<td>123</td>
</tr>
<tr>
<td>9.1</td>
<td>Formulation of (Metrical) Task Systems</td>
<td>123</td>
</tr>
<tr>
<td>9.2</td>
<td>An $8(N - 1)$-Competitive Traversal Algorithm</td>
<td>127</td>
</tr>
<tr>
<td>9.3</td>
<td>A $2N - 1$ Lower Bound</td>
<td>128</td>
</tr>
</tbody>
</table>
9.4 An Optimal Work Function MTS Algorithm 131
9.5 A Randomized Algorithm for a Uniform MTS 134
9.6 A Randomized Polylogarithmic Competitive Algorithm for Any MTS 135
9.7 Historical Notes and Open Questions 146

10 The k-Server Problem 150
10.1 The Formulation of the Model 150
10.2 Some Basic Aspects of the k-Server Problem 151
10.3 A Deterministic Lower Bound 153
10.4 k-Servers on a Line and a Tree 155
10.5 An Efficient 3-Competitive 2-Server Algorithm for Euclidean Spaces 159
10.6 Balancing Algorithms 161
10.7 The k-Server Work Function Algorithm 164
10.8 On Generalizations of the k-Server Conjecture That Fail 175
10.9 Historical Notes and Open Questions 178

11 Randomized k-Server Algorithms 182
11.1 Oblivious Adversaries and Two Randomized k-Server Algorithms for the Circle 182
11.2 A Lower Bound Against an Adaptive-Online Adversary 185
11.3 The Cat and Rat Game and Applications to Randomized k-Server Algorithms 186
11.4 The Harmonic Random Walk 191
11.5 The HARMONIC k-Server Algorithm on an Arbitrary Metric Space 192
11.6 The Resistive Approach 196
11.7 Historical Notes and Open Questions 199

12 Load Balancing 201
12.1 Defining the Problem 201
12.2 Online Algorithms for Load Balancing of Permanent Jobs 204
12.3 Formulating the Machine Assignment Problem as a Generalized Virtual Circuit Routing Problem 210
12.4 Load Balancing of Temporary Jobs 213
12.5 Bin Packing 218
12.6 Historical Notes and Open Questions 222

13 Call Admission and Circuit Routing 226
13.1 Specifying the Problem 226
13.2 Throughput Maximization for Permanent Calls in Networks with Large Edge Capacities 227
13.3 Throughput Maximization for Limited Duration Calls 232
13.4 Experimental Results 234
13.5 Call Admission for Particular Networks: The Disjoint Paths Problem 237
13.6 The Disjoint Paths Problem: A Lower Bound for a Difficult Network 245
13.7 Routing on Optical Networks 250
13.8 Path Coloring for Particular Networks 253
13.9 A Lower Bound for Path Coloring on the Brick Wall Graph 259
13.10 Historical Notes and Open Problems 260

14 Search, Trading, and Portfolio Selection 264
14.1 Online Search and One-Way Trading 264
14.2 Online Portfolio Selection 273
14.4 Two-Way Trading and the Fixed Fluctuation Model 281
14.5 Weighted Portfolio Selection Algorithms 290
14.6 Historical Notes and Open Questions 307

15 On Decision Theories and the Competitive Ratio 312
15.1 Certainty, Risk, and Strict Uncertainty 312
15.2 Decision Making Under Strict Uncertainty 315
15.3 The Competitive Ratio Axioms 321
15.4 Characterization of the Competitive Ratio 325
15.5 Characterizations of the Classical Criteria for Strict Uncertainty 333
15.6 An Example – The Leasing Problem 335
15.7 Decision Making Under Risk 339
15.8 Bayesian Approaches for Decision Making Under Uncertainty 346
15.9 Historical Notes and Open Questions 348

A Glossary 355

B Stochastic Analyses for List Accessing Algorithms 357

C The Harmonic Random Walk and Its Connection to Electrical Networks 361
CONTENTS

D Proof of Lemmas 5.4 and 5.5 in Theorem 5.11: FAR Is a Uniformly Optimal Online Paging Algorithm 364
 D.1 Proof of Lemma 5.4: Type 1 Reps and the Construction of T' 364
 D.2 Proof of Lemma 5.5: Type 2 Reps and the Construction of H 365

E Some Tools from Renewal Theory 369
 E.1 Renewal Processes 369
 E.2 Wald's Equation 370
 E.3 The Elementary Renewal Theorem 373

F Proof of Theorem 13.14: Disjoint Paths in an Array 375
 F.1 Short Distance Calls 375
 F.2 Long Distance Calls 376

G Some Tools from the Theory of Types 379

H Two Technical Lemmas 382

Bibliography 389

Index 403