Contents

Preface to the Third Edition v

1 An Approach to Astrophysics 1

1:1 Channels for Astronomical Information 3
1:2 X-Ray Astronomy: Development of a New Field 5
1:3 The Appropriate Set of Physical Laws 9
1:4 The Formation of Stars 10
1:5 Evolution of Stars 13
1:6 Abundance of the Chemical Elements in Stars and the Solar System 21
1:7 Origin of the Solar System 26
1:8 The Local Group of Galaxies 35
1:9 Galaxy Formation 38
1:10 Black Holes 40
1:11 Turbulence 41
1:12 Problems of Life 42
1:13 Unobserved Astronomical Objects 44

2 The Cosmic Distance Scale 49

2:1 Size of the Solar System 49
2:2 Trigonometric Parallax 50
2:3 Spectroscopic Parallax 50
2:4 The Moving Cluster Method 50
2:5 Method of Wilson and Bappu 51
2:6 Superposition of Main Sequences 53
2:7 RR Lyrae Variables 54
2:8 Cepheid Variables 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:9</td>
<td>Novae and HII Regions</td>
<td>54</td>
</tr>
<tr>
<td>2:10</td>
<td>Supernovae</td>
<td>55</td>
</tr>
<tr>
<td>2:11</td>
<td>The Tully–Fisher Relation</td>
<td>55</td>
</tr>
<tr>
<td>2:12</td>
<td>Distance–Red-Shift Relation</td>
<td>55</td>
</tr>
<tr>
<td>2:13</td>
<td>Distances and Velocities</td>
<td>57</td>
</tr>
<tr>
<td>2:14</td>
<td>Seeliger’s Theorem and Number Counts in Cosmology</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Problems Dealing with the Size of Astronomical Objects</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Answers to Selected Problems</td>
<td>61</td>
</tr>
<tr>
<td>3:1</td>
<td>Dynamics and Masses of Astronomical Bodies</td>
<td>63</td>
</tr>
<tr>
<td>3:2</td>
<td>Universal Gravitational Attraction</td>
<td>63</td>
</tr>
<tr>
<td>3:3</td>
<td>Ellipses and Conic Sections</td>
<td>66</td>
</tr>
<tr>
<td>3:4</td>
<td>Central Force</td>
<td>67</td>
</tr>
<tr>
<td>3:5</td>
<td>Two-Body Problem with Attractive Force</td>
<td>68</td>
</tr>
<tr>
<td>3:6</td>
<td>Kepler’s Laws</td>
<td>69</td>
</tr>
<tr>
<td>3:7</td>
<td>Determination of the Gravitational Constant</td>
<td>73</td>
</tr>
<tr>
<td>3:8</td>
<td>The Concept of Mass</td>
<td>75</td>
</tr>
<tr>
<td>3:9</td>
<td>Inertial Frames of Reference — The Equivalence Principle</td>
<td>77</td>
</tr>
<tr>
<td>3:10</td>
<td>措施 of Time</td>
<td>78</td>
</tr>
<tr>
<td>3:11</td>
<td>Uses of Pulsar Time</td>
<td>80</td>
</tr>
<tr>
<td>3:12</td>
<td>Galactic Rotation</td>
<td>81</td>
</tr>
<tr>
<td>3:13</td>
<td>Scattering in an Inverse Square Law Field</td>
<td>83</td>
</tr>
<tr>
<td>3:14</td>
<td>Stellar Drag</td>
<td>85</td>
</tr>
<tr>
<td>3:15</td>
<td>Virial Theorem</td>
<td>88</td>
</tr>
<tr>
<td>3:16</td>
<td>Stability Against Tidal Disruption</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Additional Problems</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Answers to Selected Problems</td>
<td>93</td>
</tr>
<tr>
<td>4:1</td>
<td>Random Events</td>
<td>97</td>
</tr>
<tr>
<td>4:2</td>
<td>Random Walk</td>
<td>98</td>
</tr>
<tr>
<td>4:3</td>
<td>Distribution Functions, Probabilities, and Mean Values</td>
<td>103</td>
</tr>
<tr>
<td>4:4</td>
<td>Projected Length of Randomly Oriented Rods</td>
<td>103</td>
</tr>
<tr>
<td>4:5</td>
<td>The Motion of Molecules</td>
<td>106</td>
</tr>
<tr>
<td>4:6</td>
<td>Ideal Gas Law</td>
<td>109</td>
</tr>
<tr>
<td>4:7</td>
<td>Radiation Kinetics</td>
<td>111</td>
</tr>
<tr>
<td>4:8</td>
<td>Isothermal Distributions</td>
<td>112</td>
</tr>
<tr>
<td>4:9</td>
<td>Atmospheric Kinetics</td>
<td>113</td>
</tr>
<tr>
<td>4:10</td>
<td>Particle Energy Distribution in an Atmosphere</td>
<td>115</td>
</tr>
<tr>
<td>4:11</td>
<td>Phase Space</td>
<td>117</td>
</tr>
<tr>
<td>4:12</td>
<td>Angular Diameters of Stars</td>
<td>120</td>
</tr>
<tr>
<td>4:13</td>
<td>The Spectrum of Light Inside and Outside a Hot Body</td>
<td>121</td>
</tr>
<tr>
<td>4:14</td>
<td>Boltzmann Equation and Liouville’s Theorem</td>
<td>127</td>
</tr>
<tr>
<td>4:15</td>
<td>Fermi–Dirac Statistics</td>
<td>130</td>
</tr>
</tbody>
</table>
4:16 The Saha Equation .. 133
4:17 Mean Values ... 134
4:18 Fluctuations .. 135
4:19 The First Law of Thermodynamics 136
4:20 Isothermal and Adiabatic Processes 138
4:21 Formation of Condensations and the Stability of the Interstellar Medium .. 139
4:22 Ionized Gases and Assemblies of Stars 142
Answers to Selected Problems 145

5 Photons and Fast Particles 149
5:1 The Relativity Principle 149
5:2 Relativistic Terminology 150
5:3 Relative Motion ... 154
5:4 Four-Vectors .. 158
5:5 Aberration of Light 160
5:6 Momentum, Mass, and Energy 162
5:7 The Doppler Effect 164
5:8 Poynting–Robertson Drag on a Grain 166
5:9 Motion Through the Cosmic Microwave Background Radiation ... 167
5:10 Particles at High Energies 169
5:11 High-Energy Collisions 170
5:12 Faster-Than-Light Particles 172
5:13 Strong Gravitational Fields 174
5:14 Gravitational Time Delay; Deflection of Light 178
5:15 Gravitational Lenses 179
5:16 An Independent Measure of the Hubble Constant 181
Answers to Selected Problems 182

6 Electromagnetic Processes in Space 183
6:1 Coulomb’s Law and Dielectric Displacement 183
6:2 Cosmic Magnetic Fields 185
6:3 Ohm’s Law and Dissipation 187
6:4 Magnetic Acceleration of Particles 187
6:5 Ampère’s Law and the Relation Between Cosmic Currents and Magnetic Fields .. 189
6:6 Magnetic Mirrors, Magnetic Bottles, and Cosmic Ray Particles ... 189
6:7 Maxwell’s Equations 192
6:8 The Wave Equation 193
6:9 Phase and Group Velocity 195
6:10 Energy Density, Pressure, and the Poynting Vector 196
6:11 Propagation of Waves Through a Tenuous Ionized Medium ... 198
6:12 Faraday Rotation ... 200
6:13 Light Emission by Slowly Moving Charges 204
8:11 Particles and Basic Particle Interactions 313
8:12 Energy-Generating Processes in Stars 315
8:13 The Hertzsprung–Russell Diagram and Stellar Evolution 322
8:14 Evidence for Stellar Evolution, as Seen from the Surface Composition of Some Stars 325
8:15 The Possibility of Direct Observations of Nuclear Processes in Stars ... 329
8:16 Population III Stars 331
8:17 Compact Stars .. 332
8:18 White Dwarf Stars 333
8:19 Supernovae; Neutron Stars, and Black Holes 338
8:20 Vibration and Rotation of Stars 343
Additional Problems .. 344
Answers to Problems ... 346

9 Cosmic Gas and Dust .. 351
9:1 Observations ... 351
9:2 Strömgren Spheres .. 360
9:3 Pressure Propagation and the Speed of Sound 365
9:4 Shock Fronts and Ionization Fronts 367
9:5 Origin of Cosmic Magnetic Fields 373
9:6 Dynamo Amplification of Magnetic Fields 377
9:7 Cosmic Ray Particles in the Interstellar Medium 379
9:8 Formation of Molecules and Grains 384
9:9 Infrared Emission from Galactic Sources 388
9:10 Polycyclic Aromatic Hydrocarbons 390
9:11 Heating and Cooling by Grains 392
9:12 Orientation of Interstellar Grains 394
9:13 Dark Matter ... 400
Additional Problems .. 403
Answers to Selected Problems 403

10:1 Star Formation .. 407
10:2 Gravitational Condensation of Matter 409
10:3 Jeans Criterion .. 410
10:4 Hydrostatics of Gaseous Clouds 413
10:5 Ambipolar Diffusion 413
10:6 Triggered Collapse 415
10:7 Energy Dissipation 416
10:8 Cooling of Dense Clouds by Grain Radiation 419
10:9 Condensation in the Early Solar Nebula 423
10:10 The Evidence Provided by Meteorites 427
10:11 Formation of Primitive Condensates in the Early Solar Nebula .. 431
10:12 Formation of Planetesimals 432
10:13 Condensation in the Primeval Solar Nebula 434
Answers to Selected Problems 436

11 The Universe We Inhabit 439
11:1 Questions About the Universe 439
11:2 Isotropy and Homogeneity of the Universe 440
11:3 Cosmological Principle 441
11:4 Homogeneous Isotropic Models of the Universe 443
11:5 Measuring the Geometric Properties of the Universe 447
11:6 Topology of the Universe 455
11:7 Dynamics on a Cosmic Scale 457
11:8 Some Simple Models of the Universe 457
11:9 The Einstein Equations 460
11:10 Self-Regenerating Universes 462
11:11 Olbers's Paradox 463
11:12 Horizon of a Universe 465
11:13 Bulging 467
11:14 Cosmological Models with Matter and Antimatter 469
11:15 Do the Constants of Nature Change with Time? 470
11:16 The Flow of Time 474
Answers to Selected Problems 478

12 The Early Universe 483
12:1 Background Radiation 483
12:2 Background Contributions of Discrete Sources 485
12:3 Cool Expanding Universe 488
12:4 Extrapolating Back to Early Epochs 489
12:5 The Isotropy Problem 492
12:6 The Density Parameter Ω 493
12:7 Hot Exploding Universe 494
12:8 The Flatness Problem 496
12:9 The Planck Era 497
12:10 Inflationary Cosmological Models 499
12:11 The Matter–Antimatter Asymmetry 503
12:12 The Post-Inflationary Stage 503
12:13 The Entropy of the Universe 504
12:14 Early Element Formation 505
12:15 How Hot Was the Early Universe? 508
12:16 Galaxy Formation 510
Answers to Problems 510

13 Origins of Structure 513
13:1 The Inhomogeneous Universe 513
13:2 A Swiss-Cheese Model 514
13:3 Birkhoff’s Theorem .. 519
13:4 Embeddings .. 519
13:5 Estimates of the Density Parameter Ω_0 522
13:6 Looking Back in Time 524
13:7 Inhomogeneities in the Microwave Background Radiation . . 524
13:8 The Inflationary Era .. 527
 13:8.1 The Very Earliest Times 528
 13:8.2 The Post-Inflationary Phase Transition 529
13:9 Inflationary Origins of Structure 531
13:10 The Nature of Dark Matter 533
13:11 Primordial Black Holes 535
13:12 Physical Conditions at Galaxy Formation 537
13:13 The Decoupling Era ... 538
13:14 Photon Drag .. 538
13:15 Oscillations Before Decoupling 539
13:16 Condensation on Superhorizon Scales 540
13:17 Condensation on Subhorizon Scales 542
13:18 Formation of Sheets of Galaxies 543
13:19 Localized Coupling and Condensation 544
13:20 Accretion onto Galaxy-Forming Seeds 546
13:21 Inflationary–Lemaître Universes 549
13:22 Last Impact and Decoupling of Matter from Radiation 551
13:23 Heating of Gas After Decoupling 551
13:24 Protogalactic Cooling 552
13:25 Formation of Our Own Galaxy 552
13:26 Growth Through Merging 555
13:27 Final Thoughts ... 556
Answers to Selected Problems 556

14 Life in the Universe .. 559
 14:1 Introduction ... 559
 14:2 Thermodynamics of Biological Systems 559
 14:3 Organic Molecules in Nature and in the Laboratory 561
 14:4 Origins of Life on Earth 564
 14:5 The Chemical Basis of Terrestrial Life 565
 14:6 Laboratory Syntheses 567
 14:7 Panspermia .. 567
 14:8 Higher Organisms and Intelligence 568
 14:9 Communication and Space Travel 568
 Problem 14-2 Answer ... 570

Epilogue .. 573

Appendix A: Astronomical Terminology 575
 A:1 Introduction ... 575