Contents

PREFACE viii
ACKNOWLEDGMENTS x

1 INTRODUCTION TO AIR POLLUTION 1
 1.1 The Air Pollution Problem 1
 1.2 Sources of Air Pollution 3
 1.3 Air Pollutants 4
 1.4 Effects of Air Pollution 14
 1.5 Regulatory Control of Air
 Pollution 21
 Problems and Exercises 24

2 ATMOSPHERIC STRUCTURE AND
 DYNAMICS 26
 2.1 Introduction 26
 2.2 Composition and Thermal Structure of the
 Atmosphere 26
 2.3 State Variables and Thermodynamics 29
 2.4 Atmospheric Stability 32
 2.5 Conservation Laws and Atmospheric
 Dynamics 33
 2.6 Large-scale Inviscid Flows 35
 2.7 Small-scale Viscous Flows 37
 2.8 Applications 40
 Problems and Exercises 40

3 ATMOSPHERIC SYSTEMS AND POLLUTANT
 TRANSPORT 42
 3.1 Introduction 42
 3.2 Macroscale Systems 42
 3.3 Synoptic Weather Systems 51
 3.4 Mesoscale Systems 59
 3.5 Microscale Systems 69
 Problems and Exercises 75

4 MICROMETEOROLOGY AND PLANETARY
 BOUNDARY LAYER 77
 4.1 Introduction and Definitions 77
 4.2 Earth-Atmosphere Exchange
 Processes 78
 4.3 Vertical Distributions of Thermodynamic
 Variables 80
 4.4 Vertical Distribution of Winds in the
 PBL 83
 4.5 Turbulence 84
 4.6 Gradient-transport Theories 89
 4.7 Similarity Theories 91
 4.8 Boundary-layer Parameterization for
 Dispersion Applications 96
 Problems and Exercises 103

5 STATISTICAL DESCRIPTION OF ATMOSPHERIC
 TURBULENCE 105
 5.1 Reynolds Averaging 105
 5.2 Probability Functions 105
 5.3 Autocorrelation Functions 108
 5.4 Spectrum Functions 110
 5.5 Taylor's Hypothesis 112
 5.6 Statistical Theory of Turbulence 113
 5.7 Observed Spectra and Scales 117
5.8 Effects of Smoothing and Finite Sampling 120
5.9 Lagrangian Description of Turbulence 122
5.10 Parameterization of Turbulence for Diffusion Applications 124
Problems and Exercises 125

6 GRADIENT TRANSPORT THEORIES 127
6.1 Eulerian Approach to Describing Diffusion 127
6.2 Mass Conservation and Diffusion Equations 128
6.3 Molecular Diffusion 131
6.4 Turbulent Diffusion 137
6.5 Constant K (Fickian Diffusion)-Theory 139
6.6 Variable K-Theory 143
6.7 Limitations of Gradient Transport Theories 148
6.8 Experimental Verification of K-Theories 150
6.9 Applications of K-Theories to Atmospheric Dispersion 152
Problems and Exercises 152

7 STATISTICAL THEORIES OF DIFFUSION 155
7.1 Lagrangian Approach to Describing Diffusion 155
7.2 Statistical Theory of Absolute Diffusion 155
7.3 Plume Diffusion from Continuous Sources 161
7.4 Statistical Theory of Relative Diffusion 163
7.5 Puff Diffusion from Instantaneous Releases 167
7.6 Fluctuating Plume Models 169
7.7 Experimental Verification of Statistical Theories 170
7.8 Applications to Atmospheric Dispersion and Limitations 175
Problems and Exercises 176

8 SIMILARITY THEORIES OF DISPERSION 178
8.1 Dispersion in Stratified Shear Flows 178
8.2 Lagrangian Similarity Theory for the Neutral Surface Layer 180
8.3 Lagrangian Similarity Theory for the Stratified Surface Layer 183

9 GAUSSIAN DIFFUSION MODELS 197
9.1 Basis and Justification for Gaussian Models 197
9.2 Gaussian Plume and Puff Diffusion Models 198
9.3 Diffusion Experiments 200
9.4 Empirical Dispersion Parameterization Schemes 202
9.5 Further Improvements in Dispersion Parameterization 207
9.6 The Maximum Ground-Level Concentration 210
9.7 Model Evaluations and Uncertainties 213
9.8 Limitations of Gaussian Diffusion Models 216
9.9 Practical Applications of Gaussian Diffusion Models 216
Problems and Exercises 218

10 PLUME RISE, SETTLING, AND DEPOSITION 220
10.1 Momentum and Buoyancy Effects of Release 220
10.2 Plume-rise Theory and Observations 222
10.3 Gravitational Settling of Particles 226
10.4 Dry Deposition 228
10.5 Dispersion-Deposition Models 234
10.6 Applications 237
Problems and Exercises 237

11 NUMERICAL DISPERSION MODELS 239
11.1 Introduction 239
11.2 Short-range Gradient Transport Models 239
11.3 Turbulence Kinetic Energy Models 243
11.4 Higher Order Closure Models 245
11.5 Large-eddy Simulations 249
11.6 Lagrangian Stochastic Models 260
Problems and Exercises 267