Geometry, Fields and Cosmology

Techniques and Applications

Edited by
B. R. Iyer
Raman Research Institute,
Bangalore, India

and

C. V. Vishveshwara
Indian Institute of Astrophysics,
Bangalore, India

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>1.</td>
<td>Geometrical methods for physics</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>N. Mukunda</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Introduction and Scope</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Sets, Mappings, Equivalence Relations</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Action of a Group on a Set</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Algebraic Operations on Vector Spaces</td>
<td>8</td>
</tr>
<tr>
<td>4.1.</td>
<td>Dimension, Linear Independence, Basis</td>
<td>8</td>
</tr>
<tr>
<td>4.2.</td>
<td>Frames, the Group GL(n,R), Orientation</td>
<td>8</td>
</tr>
<tr>
<td>4.3.</td>
<td>Direct Sums and Products of Vector Spaces</td>
<td>10</td>
</tr>
<tr>
<td>4.4.</td>
<td>Tensors over V</td>
<td>11</td>
</tr>
<tr>
<td>4.5.</td>
<td>Forms over V</td>
<td>13</td>
</tr>
<tr>
<td>4.6.</td>
<td>Inner Contraction, Simple forms</td>
<td>15</td>
</tr>
<tr>
<td>4.7.</td>
<td>n-Forms and Volume Elements for V</td>
<td>16</td>
</tr>
<tr>
<td>4.8.</td>
<td>Introduction of a Metric on V</td>
<td>17</td>
</tr>
<tr>
<td>4.9.</td>
<td>The Duality Operation</td>
<td>19</td>
</tr>
<tr>
<td>5.</td>
<td>Topological Spaces</td>
<td>21</td>
</tr>
<tr>
<td>5.1.</td>
<td>Open Sets</td>
<td>21</td>
</tr>
<tr>
<td>5.2.</td>
<td>Continuity of Maps</td>
<td>22</td>
</tr>
<tr>
<td>5.3.</td>
<td>Equivalent Topologies</td>
<td>22</td>
</tr>
<tr>
<td>5.4.</td>
<td>Comparing Topologies</td>
<td>23</td>
</tr>
<tr>
<td>5.5.</td>
<td>Topology on a Subset</td>
<td>24</td>
</tr>
<tr>
<td>5.6.</td>
<td>Basis for a Topology</td>
<td>24</td>
</tr>
<tr>
<td>5.7.</td>
<td>Hausdorff, Countability Properties</td>
<td>25</td>
</tr>
<tr>
<td>5.8.</td>
<td>Connectedness, Compactness</td>
<td>25</td>
</tr>
<tr>
<td>5.9.</td>
<td>Homeomorphisms</td>
<td>26</td>
</tr>
<tr>
<td>5.10.</td>
<td>The Case of a Metric</td>
<td>26</td>
</tr>
<tr>
<td>5.11.</td>
<td>Composition of Continuous Maps, Homeomorphisms</td>
<td>27</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.</td>
<td>Differentiable Manifolds, Smooth Maps, Diffeomorphisms, Smooth Functions and Curves, Pullback of Functions</td>
<td>27</td>
</tr>
<tr>
<td>6.1.</td>
<td>Charts</td>
<td>27</td>
</tr>
<tr>
<td>6.2.</td>
<td>Atlas</td>
<td>27</td>
</tr>
<tr>
<td>6.3.</td>
<td>Manifold of Dimension n</td>
<td>28</td>
</tr>
<tr>
<td>6.4.</td>
<td>Differentiable Manifold of Dimension n</td>
<td>29</td>
</tr>
<tr>
<td>6.5.</td>
<td>Smooth Maps between Manifolds</td>
<td>31</td>
</tr>
<tr>
<td>6.6.</td>
<td>Diffeomorphisms</td>
<td>31</td>
</tr>
<tr>
<td>6.7.</td>
<td>Smooth Real-Valued Functions on a Manifold</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>- An Example</td>
<td>32</td>
</tr>
<tr>
<td>6.8.</td>
<td>The Pull-back of Functions</td>
<td>33</td>
</tr>
<tr>
<td>6.9.</td>
<td>Smooth Parametrised Curves on a Manifold</td>
<td>34</td>
</tr>
<tr>
<td>7.</td>
<td>Tangent, Cotangent and Tensor Spaces at a Point; Smooth Tensor Fields on a Manifold; Orientability</td>
<td>35</td>
</tr>
<tr>
<td>7.1.</td>
<td>Tangent Space at a Point</td>
<td>35</td>
</tr>
<tr>
<td>7.2.</td>
<td>Cotangent Space at a Point</td>
<td>37</td>
</tr>
<tr>
<td>7.3.</td>
<td>Tensor Spaces at a Point</td>
<td>39</td>
</tr>
<tr>
<td>7.4.</td>
<td>Tensor Fields</td>
<td>39</td>
</tr>
<tr>
<td>7.5.</td>
<td>Orientability</td>
<td>41</td>
</tr>
<tr>
<td>7.6.</td>
<td>Commutator of Vector Fields</td>
<td>42</td>
</tr>
<tr>
<td>7.7.</td>
<td>Wedge Product of Fields of Forms</td>
<td>43</td>
</tr>
<tr>
<td>8.</td>
<td>The Tangent Map; Classifying Smooth Maps; Pull-back Extended; Case of Diffeomorphisms</td>
<td>43</td>
</tr>
<tr>
<td>8.1.</td>
<td>The Tangent Map</td>
<td>43</td>
</tr>
<tr>
<td>8.2.</td>
<td>Examples of Tangent Maps</td>
<td>45</td>
</tr>
<tr>
<td>8.3.</td>
<td>Rank of a Smooth Map</td>
<td>46</td>
</tr>
<tr>
<td>8.4.</td>
<td>Classifying Smooth Regular Maps</td>
<td>47</td>
</tr>
<tr>
<td>8.5.</td>
<td>Extending the Pullback</td>
<td>48</td>
</tr>
<tr>
<td>8.6.</td>
<td>Pull-back Versus Differential and Wedge Product</td>
<td>49</td>
</tr>
<tr>
<td>8.7.</td>
<td>The Case of Diffeomorphisms</td>
<td>50</td>
</tr>
<tr>
<td>9.</td>
<td>Intrinsic Differentiation Processes on a Differentiable Manifold</td>
<td>52</td>
</tr>
<tr>
<td>9.1.</td>
<td>The Lie Derivative</td>
<td>53</td>
</tr>
<tr>
<td>9.2.</td>
<td>Relation to a Diffeomorphism</td>
<td>57</td>
</tr>
<tr>
<td>9.3.</td>
<td>Exterior Differentiation</td>
<td>57</td>
</tr>
<tr>
<td>9.4.</td>
<td>Relation Between Pull-back and Exterior Differentiation</td>
<td>61</td>
</tr>
<tr>
<td>9.5.</td>
<td>The Cartan Family Identity and Other Relations Among L_X, i_X and d</td>
<td>61</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

10. Covariant Differentiation, Parallel Transport and
 Affine Connection; Torsion, Curvature; Cartan
 Equations, Bianchi Identities; Metric Geometry 63
10.1. Covariant Differentiation - an Affine Connection 64
10.2. Local Coordinate Description of an Affine Connection 65
10.3. Parallel Transport 66
10.4. Integral Curves of a Vector Field, Parallel Transport
 along a Curve, Geodesics 67
10.5. The Anholonomic Connection Coefficients 69
10.6. Torsion and Curvature 72
10.7. The Cartan Equations of Structure 74
10.8. Connection to Familiar Notations 75
10.9. The Bianchi Identities 78
10.10 Introduction of Metric - Riemannian Structure 80
10.11. Metric Compatible Affine Connection 82
10.12. New Interpretation for Geodesics 84
11. Congruences, submanifolds, foliations, Frobenius'
 Theorem; closed and exact forms; Poincaré's lemma 85
11.1. Integral curves, congruences of a vector field 85
11.2. Lie dragging of tensor fields 86
11.3. Killing vector fields with respect to a metric 88
11.4. Submanifolds 89
11.5. Regular submanifolds 90
11.6. Examples of regular submanifolds 91
11.7. Integral curves and commutators of vector fields 92
11.8. Foliations 95
11.9. Frobenius' Theorem 96
11.10. Conditions for coordinate-based frames 99
11.11. Closed and Exact Forms, Simple Forms 100
11.12. Poincaré's Lemma 101
12. Orientation, Volume forms, Pseudo Riemannian metric,
 Hodge duality 104
12.1. Defining an n-form 105
12.2. Integral of an n-form 106
12.3. Volume forms 107
12.4. Bringing in a metric 108
12.5. The Hodge duality operation 109
12.6. Inner product for forms, duality and the wedge 112
12.7. The Co-differential operator 114
12.8. The Laplacian on forms 115
TABLE OF CONTENTS

15.6. Parallel transport - horizontal lifts - in a PFB 179
15.7. Covariant differentiation in the PFB context 184
15.8. The Curvature two-form and the Cartan Theorem 188
15.9. The Bianchi identities 195
16. Integration of differential forms, Stokes' theorem 197
16.1. Introduction 197
16.2. Integrating an n-form over M 197
16.3. Integrating an n-form over a portion of M 198
16.4. Integrating a 0-form over M? 199
16.5. Integrating a one-form $\alpha \in \mathcal{X}^*(M)$ 199
16.6. Case of an exact one-form 200
16.7. Integrating forms of general degree - basic questions 201
16.8. Domains of integration and the integral of a form of general degree 201
16.9. Integrating an exact form-towards Stokes' Theorem 203
16.10. Stokes' Theorem for exact n-forms 208
16.11. Regular domains of lower dimensions, Stokes' Theorem for exact forms 211
16.12. The boundary of a boundary - Cartan's Lemma 213
16.13. A glance at de Rham Cohomology 215
17. Homotopy and Holonomy 216
17.1. Introduction 216
17.2. The components of a topological space 218
17.3. Paths and path-connectedness 218
17.4. Operations with paths-homotopic equivalence 219
17.5. Loops and based loops 222
17.6. The fundamental (first homotopy) group $\pi_1(X; x_0)$ 223
17.7. Fundamental groups at different points - simple and multiple connectedness 224
17.8. Path-dependence of isomorphism between π_1's 227
17.9. Free homotopy of general loops 229
17.10. Comparing fundamental groups - homotopy types - contractible spaces 231
17.11. The higher homotopy groups $\pi_n(X)$-introduction 234
17.12. Models for the spheres S^n 235
17.13. Definition and properties of n-loops and $\pi_n(X; x_0)$ 237
17.14. $\pi_n(X; x_0)$ is Abelian if $n \geq 2$ 238
17.15. Higher homotopy groups at different points 240
17.16. Homotopy properties of Lie groups - preliminaries 245
17.17. Path-connected components of a Lie group 245
17.18. The Lie algebra and the universal covering group 246
17.19. The fundamental group $\pi_1(G)$, and the second homotopy group $\pi_2(G)$ in the compact case 247
17.20. Lie group coset spaces, their connectivities and fundamental groups 249
17.21. The second homotopy group of a coset space - case of compact G 254
17.22. Path dependence of parallel transport - the holonomy group in a PFB 263
18. Concluding remarks and some references 267
References 268

2. Problems on geometrical methods for physics 269
 Ravi Kulkarni
 Note to the Reader 269
 1. Manifolds and Smooth Maps 270
 2. Differential Forms 271
 3. Vector-fields and Lie Derivatives 273
 4. Miscellaneous Problems 274
 5. Frobenius' Theorem 275
 6. Connections and Curvature 275
 7. Lie Groups and Lie Algebras 276
 8. Fibre Bundles 277
 9. Supplementary Problems 278

3. Tetrads, the Newman-Penrose formalism and spinors 289
 S. V. Dhurandhar
 1. Introduction 289
 2. The Minkowski Space and Lorentz Transformations 290
 3. Tetrads in Curved Spacetimes 293
 4. Directional Derivatives and Ricci Rotation Coefficients 295
 5. Null Tetrads and Spin Coefficients 296
 6. Null Tetrads Geometry and Null Rotations 297
 7. Spin Coefficients and Weyl Scalars 299
 8. The Maxwell Equations in the NP Formalism 301
 9. The Optical Scalars, Propagation of Shadows 303
 10. Spinors 305
 11. Null vectors in terms of the projective coordinates 308
 12. $SL(2,\mathbb{C})$ Group Transformations 309
 13. Spinor Algebra 311
 14. Connection between tensors and spinors 315
 15. Geometrical Picture of a First Rank Spinor 316
TABLE OF CONTENTS

16. Dyad Formalism 318
17. The Application of Spin or Algebra to Petrov Classification 319
18. Spin Structure and Global Considerations 323
19. Spinor Analysis 325
20. Spin Dyads and Spin Coefficients 327
21. Conclusion 330

References 330

4. Problems on tetrads, the Newman-Penrose formalism and spinors 331
 Sai Iyer
 1. Problems 331
 2. Solutions 337
 References 350

5. Aspects of quantum field theory 351
 T. Padmanabhan
 1. General Introduction 351
 2. The Path Integral 353
 2.1. Introduction 353
 2.2. Amplitudes from ‘sum over paths’ 353
 2.3. Sum over paths for quadratic actions 356
 2.4. Path integral with external source 363
 2.5. The Euclidean time 366
 2.6. Path Integrals from time slicing 369
 2.7. Kernels and Ground-state expectation values 370
 2.8. Harmonic Oscillators 377
 2.9. Infinite number harmonic oscillators 380
 2.10. Path integrals with Jacobi action 388
 2.11. Rigorous evaluation of the Jacobi path integral 393
 3. The Concept of Fields 396
 3.1. Introduction 396
 3.2. Path integral for a relativistic particle 396
 3.3. Fields and oscillators 398
 4. The Technique of Effective Action 403
 4.1. Introduction 403
 4.2. The concept of effective action 403
 4.3. Renormalisation of the effective lagrangian 412
 4.4. ‘Running’ coupling constants 416
 4.5. Effective action in Electrodynamics 417
 4.6. Effective lagrangian from path integral 425
 4.7. Renormalisation of the effective action 429
TABLE OF CONTENTS

2.1. Weyl's Postulate 483
2.2. The Cosmological Principle 485
2.3. The Energy Tensor 487
2.4. The Friedman Models 489
2.5. The Red Shift, Luminosity Distance and Hubble's Law 491
2.6. Horizons 494
2.7. Singularity 496
3. The early universe 497
3.1. The Distribution Functions 498
3.2. The Behaviour of Entropy 500
3.3. The Decoupling of Neutrinos 501
3.4. Neutron to Proton Ratio 504
3.5. The Primordial Nucleosynthesis 506
3.6. Massive Neutrinos 509
3.7. The Cosmic Microwave Background Radiation 509
4. The very early universe 510
4.1. The Baryon to Photon Ratio 512
4.2. Some Problems of standard big band 513
4.3. The Inflationary Universe 516
4.4. The New Inflationary Model 519

8. The cosmological constant: A tutorial 525
 Patrick Dasgupta
 1. Introduction 525
 2. Vacuum and the cosmological constant 527
 3. Energy-momentum tensors in FRW models 528
 4. Hot big-bang model when $\Lambda \neq 0$ 532
 5. Virial radius of a spherically collapsing dust-ball 540
 6. The Flatness problem 544
 7. Conclusion 547
 References 547

Index 549